27 February 2025

Соглашение

О принятии согласованных технических правил Организации Объединенных Наций для колесных транспортных средств, предметов оборудования и частей, которые могут быть установлены и/или использованы на колесных транспортных средствах, и об условиях взаимного признания официальных утверждений, выдаваемых на основе этих правил Организации Объединенных Наций*

(Пересмотр 3, включающий поправки, вступившие в силу 14 сентября 2017 года)

Добавление 116 — Правила № 117 ООН

Пересмотр 6 — Поправка 2

Дополнение 2 к поправкам серии 04 — Дата вступления в силу: 10 января 2025 года

Единообразные предписания, касающиеся официального утверждения шин в отношении звука, издаваемого ими при качении, и/или их сцепления на мокрых поверхностях и/или сопротивления качению

Настоящий документ опубликован исключительно в информационных целях. Аутентичным и юридически обязательным текстом является документ ECE/TRANS/WP.29/2024/65 с поправками, указанными в пункте 90 доклада ECE/TRANS/WP.29/1179.

ОРГАНИЗАЦИЯ ОБЪЕДИНЕННЫХ НАЦИЙ

Соглашение о принятии единообразных условий официального утверждения и о взаимном признании официального утверждения предметов оборудования и частей механических транспортных средств, совершено в Женеве 20 марта 1958 года (первоначальный вариант); Соглашение о принятии единообразных технических предписаний для колесных транспортных средств, предметов оборудования и частей, которые могут быть установлены и/или использованы на колесных транспортных средствах, и об условиях взаимного признания официальных утверждений, выдаваемых на основе этих предписаний, совершено в Женеве

* Прежние названия Соглашения:

5 октября 1995 года (Пересмотр 2).

Содержание изменить следующим образом:
«[]
6. Требования
7. Модификация типа шины и распространение официального утверждения
[]»
Приложения изменить следующим образом:
«[]
4 Зарезервировано
[]
10 Процедура определения характеристик абразивного износа шин класса С1
Добавление 1 — Метод испытания а) — Расчет ускорений
Добавление 2 — Метод испытания а) — Пример протокола испытания для метода с использованием транспортного средства
Добавление 3 — Метод испытания b) — Исходные значения для цикла испытания
Добавление 4 — Метод испытания b) — Допуски для испытательного оборудования
Добавление 5 — Метод испытания b) — Замена шлифовальной бумаги, используемой в качестве испытательной поверхности
Добавление 6 — Метод испытания b) — Пример протокола испытания для метода испытания на барабане в помещении
Пункт 1, сноску 1 изменить следующим образом:
«¹ В соответствии с определениями, содержащимися в Сводной резолюции о конструкции

Пункт 1.1 изменить следующим образом:

транспортных средств (СР.3)».

«1.1 Настоящие Правила применяются к новым пневматическим шинам* классов C1, C2 и C3 в новом состоянии в отношении издаваемого ими звука, сопротивления качению и характеристик сцепления на мокрых поверхностях (сцепления с мокрым дорожным покрытием) и шинам класса C1 в изношенном состоянии в отношении характеристик сцепления на мокрых поверхностях (сцепления с мокрым дорожным покрытием). Они применяются также к шинам класса C1 в новом состоянии в отношении их абразивного износа, как определено в пункте 1.3 настоящих Правил ООН. Однако они не применяются к:»

Включить новый пункт 1.3 следующего содержания:

«1.3 В случае шин класса С1, за исключением ледовых шин и шин с кодом номинального диаметра обода ≤ 13, официальное утверждение дополняется информацией об уровне абразивного износа в соответствии с пунктами 5.7–5.9 настоящих Правил».

Пункт 2, сноски 2–4 изменить следующим образом:

- \ll^2 Шины класса C1 соответствуют "шинам для легковых автомобилей" в стандарте ISO 4000-1:2021.
- ³ Единицей Международной системы единиц (СИ), обычно используемой для измерения сопротивления качению, является ньютон-метр на метр, что соответствует силе сопротивления в ньютонах.
- 4 Сопротивление качению выражается в ньютонах, а нагрузка в килоньютонах. Коэффициент сопротивления качению не имеет единицы измерения».

Пункт 2.7 изменить следующим образом:

«2.7 "Размер репрезентативной шины" означает размер шины. представленной для испытания, описанного в приложении 3 к настоящим Правилам, в отношении звука, издаваемого при качении, или в приложении 5 — в отношении сцепления на мокрых поверхностях, или в приложении 6 — в отношении сопротивления качению, или в приложении 9 — в отношении сцепления на мокрых поверхностях шин в изношенном состоянии для оценки соответствия на предмет официального утверждения типа шины, или в приложении 7 в отношении определения эффективности шины на снегу, или в приложении 8 — в отношении определения эффективности шины на льду».

Пункт 2.11 изменить следующим образом:

«2.11 "Усиленная шина" или "шина с повышенной несущей способностью" класса С1 означает конструкцию шины, предназначенной для перевозки с большей нагрузкой при более высоком внутреннем давлении воздуха, чем нагрузка, перевозимая с использованием соответствующих стандартных шин при стандартном внутреннем давлении воздуха, как указано в стандарте ISO 4000-1:2021²».

Пункт 2.13 изменить следующим образом:

«2.13 "Зимняя шина" означает шину, у которой рисунок протектора, материал протектора или конструкция предназначены преимущественно для обеспечения на грязи и/или снегу более высоких показателей, чем у обычной шины, в отношении ее способности приводить транспортное средство в движение и управлять его движением».

Пункт 2.18 изменить следующим образом:

- «2.18 "Стандартная эталонная испытательная шина" или "СЭИШ" означает шину, которая изготавливается, проверяется и хранится в соответствии со стандартами «АСТМ интернэшнл»:
 - a) E1136 19 для размера P195/75R14 и которую называют "СЭИШ14";
 - b) F2493 23 для размера P225/60R16 и которую называют "СЭИШ16";
 - F3611 22e1 для размера P225/60R16 в изношенном состоянии и которую называют "изношенная СЭИШ16 с формованным покрытием";
 - d) F2872 19 для размера 225/75R16C и которую называют "СЭИШ16C";
 - e) F2871 23 для размера 245/70R19,5 и которую называют "СЭИШ19,5";
 - f) F2870 23 для размера 315/70R22,5 и которую называют "СЭИШ22,5";
 - g) F3678 23 для размера 245/70R19,5 и которую называют "СЭИШ19,5 с узкими прорезями";
 - h) F3677 23 для размера 315/70R22,5 и которую называют "СЭИШ22,5 с узкими прорезями";
 - i) F3676 23 для размера 225/45R17 и которую называют "СЭИШ17S":
 - j) F3675 23 для размера 225/45R17 и которую называют "СЭИШ17W"]».

Включить новый пункт 2.21 и его подпункты следующего содержания:

- «2.21 Характеристики абразивного износа специальные определения
- 2.21.1 "Степень абразивного износа" означает потерю массы материала шины, обусловленную процессом ее износа, в зависимости от пройденного расстояния, и выражается в мг/км.
- 2.21.2 "*Уровень абразивного износа*" означает степень абразивного износа, приведенную к величине нагрузки на шину, и выражается в мг/км/т.
- 2.21.3 "Индекс абразивного износа" (АІСТ) потенциальной шины означает безразмерную единицу для выражения уровня абразивного износа шины по отношению к уровню абразивного износа применимой стандартной эталонной испытательной шины (СЭИШ)».

Включить новый пункт 3.1.1.1 следующего содержания:

«3.1.1.1 в случае шин класса С1 информацию об уровне абразивного износа, если она сообщается, представляют в формате согласно формуляру протокола испытаний, который приводится в добавлении 2 или добавлении 6 к приложению 10;»

Пункт 3.2.1 изменить следующим образом:

«3.2.1 подробную информацию об основных параметрах в указанном диапазоне размеров шин, включая рисунок протектора, с точки зрения воздействия на характеристики шины (т. е. уровень звука, издаваемого при качении, сцепление на мокрых поверхностях, сопротивление качению, эффективность на снегу и на льду и абразивный износ). Это могут быть описания, дополненные техническими данными, чертежи, фотографии или изображения, полученные методом компьютерной томографии (КТ), которые должны быть достаточно наглядными, чтобы орган по официальному утверждению типа или техническая служба могли определить, окажут ли любые последующие изменения основных параметров шины отрицательное воздействие на ее характеристики. Последствия изменения второстепенных элементов конструкции шины для ее характеристик будут выявляться и определяться в ходе проверок на соответствие производства».

Пункт 5.2.2 изменить следующим образом:

- «5.2.2 В карточке сообщения, упомянутой в пункте 5.3 ниже, для указания отдельных параметров эффективности в соответствии с Правилами № 117 ООН используют следующие индексы:
 - S для указания дополнительного соответствия требованиям о звуке, издаваемом шинами при качении;
 - W для указания дополнительного соответствия требованиям о сцеплении на мокрых поверхностях шин в новом состоянии;
 - R для указания дополнительного соответствия требованиям о сопротивлении шин качению;
 - В для указания дополнительного соответствия требованиям о сцеплении на мокрых поверхностях шин в изношенном состоянии.

Буква S будет сопровождаться индексом "2" для обозначения соответствия стадии 2; с учетом же того, что для требований в отношении сцепления шин в новом состоянии с мокрым дорожным покрытием и сопротивления качению в пунктах 6.2 и 6.3 ниже определено по две стадии, буква W будет сопровождаться либо индексом "1" для обозначения соответствия стадии 1, либо индексом "2" в случае соответствия стадии 2, а буква R будет сопровождаться либо

индексом "2" для обозначения соответствия стадии 2, либо индексом "3" в случае соответствия стадии 3».

Включить новые пункты 5.7-5.10 следующего содержания:

- «5.7 До 6 июля 2026 года по просьбе подателя заявки в ходе официального утверждения нового типа шин класса С1 можно будет определять уровень абразивного износа одной шины данного типа в соответствии с приложением 10 к настоящим Правилам. Результаты испытаний сообщают органу по официальному утверждению типа в формате согласно формуляру протокола испытаний, который приводится в добавлении 2 или добавлении 6 к приложению 10.
- В период с 7 июля 2026 года по 31 декабря 2026 года по просьбе подателя заявки в ходе официального утверждения нового типа шин класса С1 можно будет определять уровень абразивного износа шины данного типа в соответствии с приложением 10 к настоящим Правилам. Результаты испытаний сообщают органу по официальному утверждению типа в формате согласно формуляру протокола испытаний, который приводится в добавлении 2 или добавлении 6 к приложению 10.
- 5.9 Начиная с 1 января 2027 года изготовитель в ходе официального утверждения нового типа шин класса С1 сообщает уровень абразивного износа шины данного типа, определяемый в соответствии с приложением 10 к настоящим Правилам. Результаты испытаний сообщают органу по официальному утверждению типа в формате согласно формуляру протокола испытаний, который приводится в добавлении 2 или добавлении 6 к приложению 10.
- 5.10 Для целей распространения существующих официальных утверждений типа на основании настоящих Правил, впервые предоставленных до 1 января 2027 года, проведения испытаний на абразивный износ не требуется».

Пункт 6, название изменить следующим образом:

«6. Требования»

Пункт 6.5.1 изменить следующим образом:

«6.5.1 Требования, касающиеся эффективности шин классов С1, С2 и С3 на заснеженном дорожном покрытии

Минимальное значение коэффициента эффективности на заснеженном дорожном покрытии, рассчитанное в соответствии с процедурой, описанной в приложении 7, по сравнению с СЭИШ должно быть следующим:

Класс шины	Коэффициент сцепления шины с заснеженным дорожным покрытием (метод торможения на снегу) ^{а)} Эталоны = СЭИШ14, СЭИШ16С		Коэффициент сцепления шины с заснеженным дорожным покрытием (метод испытания тяги в повороте) ^{b)}	Коэффициент сцепления шины с заснеженным дорожным покрытием (метод ускорения) ^{с)}	
			Эталоны = СЭИШ14, СЭИШ16	Эталоны = СЭИШ19,5, СЭИШ22,5, СЭИШ19,5 с узкими прорезями, СЭИШ22,5 с узкими прорезями	
C1	1,07	н.д.	1,10	н.д.	
C2	н.д.	1,02	1,10	н.д.	
C3	н.д.	н.д.	н.д.	1,25	

 $^{^{}a)}$ См. пункт 3 приложения 7 к настоящим Правилам.

b) См. пункт 2 приложения 7 к настоящим Правилам.

с) См. пункт 4 приложения 7 к настоящим Правилам».

Пункт 8.3.2 изменить следующим образом:

«8.3.2 Проверочные испытания на предмет официальных утверждений в соответствии с пунктом 6.5 настоящих Правил проводят с использованием такого же метода (см. приложение 7 к настоящим Правилам), который был установлен для первоначального официального утверждения».

Добавить новый пункт 8.3.2.1 следующего содержания:

«8.3.2.1 Проверочные испытания на предмет официальных утверждений шин класса СЗ в соответствии с пунктом 6.5.1 настоящих Правил могут проводиться — по просьбе изготовителя шин — с использованием той же эталонной шины (см. приложение 7 к настоящим Правилам), которая была принята для первоначального официального утверждения».

Добавить новый пункт 8.3.4 следующего содержания:

«8.3.4 Проверочные испытания на предмет официальных утверждений в соответствии с пунктом 6.1 настоящих Правил могут проводиться — по просьбе изготовителя шин — с использованием той же формулы температурной коррекции (см. приложение 3 к настоящим Правилам), которая была принята для первоначального официального утверждения».

Добавить новые пункты 12.18–12.26 следующего содержания:

- «12.18 До 6 июля 2025 года Договаривающиеся стороны, применяющие настоящие Правила, продолжают предоставлять официальные утверждения типа на основании уровня звука, издаваемого шинами при качении, с использованием исключительно формулы температурной коррекции, указанной в пункте 4.2.1 приложения 3.
- 12.19 Начиная с 7 июля 2025 года Договаривающиеся стороны, применяющие настоящие Правила, предоставляют официальные утверждения типа на основании уровня звука, издаваемого шинами при качении, с использованием исключительно формулы температурной коррекции, указанной в пункте 4.2.2 приложения 3.
- 12.20 Договаривающиеся стороны, применяющие настоящие Правила, продолжают предоставлять распространения существующих официальных утверждений типа, впервые предоставленных до 7 июля 2025 года на основании уровня звука, издаваемого шинами при качении, с использованием формулы температурной коррекции, указанной в пункте 4.2.1 приложения 3. Если для целей распространения, подлежащего предоставлению после 6 июля 2025 года, требуется проведение нового испытания на репрезентативной шине другого размера, то используют формулу температурной коррекции, указанную в пункте 4.2.2 приложения 3.
- 12.21 Начиная с 1 сентября 2028 года Договаривающиеся стороны, применяющие настоящие Правила, не обязаны признавать официальные утверждения типа, впервые предоставленные после 31 августа 2028 года в соответствии с дополнением 2 к поправкам серии 04 к настоящим Правилам на основе процедур испытаний для измерения эффективности сцепления шин в новом состоянии с мокрым дорожным покрытием, описанных в приложении 5 к настоящим Правилам, с использованием в качестве эталона одной из двух эквивалентных стандартных эталонных испытательных шин СЭИШ19,5 или СЭИШ22,5.
- 12.22 Начиная с 1 сентября 2028 года Договаривающиеся стороны, применяющие настоящие Правила, не обязаны признавать официальные утверждения типа, впервые предоставленные после 31 августа 2028 года в соответствии с дополнением 2 к поправкам серии 04 к настоящим Правилам на основе процедур испытаний для определения эффективности на заснеженном дорожном покрытии, описанных в

приложении 7 к настоящим Правилам, с использованием в качестве эталона одной из двух эквивалентных стандартных эталонных испытательных шин СЭИШ19,5 или СЭИШ22,5.

12.23 Независимо от положений пункта 12.21 Договаривающиеся стороны, применяющие настоящие Правила, продолжают предоставлять распространения существующих официальных утверждений типа шин класса СЗ в соответствии с поправками серии 04 к настоящим Правилам, впервые предоставленных до 1 сентября 2028 года на основе процедур испытаний для измерения эффективности сцепления шин в новом состоянии с мокрым дорожным покрытием, описанных в приложении 5 к настоящим Правилам, с использованием в качестве эталона одной из двух эквивалентных стандартных эталонных испытательных шин СЭИШ19,5 или СЭИШ22,5. Если для целей распространения, подлежащего предоставлению после 1 сентября 2028 года, требуется проведение нового испытания на репрезентативной шине другого размера, то используют "СЭИШ19,5 c узкими прорезями" или "СЭИШ22,5 с узкими прорезями".

12.24 Независимо от положений пункта 12.22 Договаривающиеся стороны, применяющие настоящие Правила, продолжают предоставлять распространения существующих официальных утверждений типа шин класса С3 в соответствии с поправками серии 04 к настоящим Правилам, впервые предоставленных до 1 сентября 2028 года, на основе процедур испытаний для определения эффективности на заснеженном дорожном покрытии, описанных в приложении 7 к настоящим Правилам, с использованием в качестве эталона либо СЭИШ19,5, либо СЭИШ22,5. Если для целей распространения, подлежащего предоставлению после 1 сентября 2028 года, требуется проведение нового испытания на репрезентативной шине другого размера, то используют "СЭИШ19,5 с узкими прорезями" или "СЭИШ22,5 с узкими прорезями".

12.25 Начиная с момента вступления в силу настоящего дополнения и до 31 августа 2028 года Договаривающиеся стороны, применяющие настоящие Правила, признают официальные утверждения типа на основании дополнения 2 к поправкам серии 04 к настоящим Правилам, впервые предоставленные до 1 сентября 2028 года, если характеристики испытательного трека для измерения эффективности сцепления шин в новом состоянии с мокрым дорожным покрытием установлены с использованием следующих эталонных шин:

Класс шины	Эталонные шины
C2	СЭИШ16 или СЭИШ16С
C3	СЭИШ16, СЭИШ19,5, СЭИШ22,5, СЭИШ19,5 с узкими прорезями или СЭИШ22,5 с узкими прорезями

12.26 Начиная с 1 сентября 2028 года Договаривающиеся стороны, применяющие настоящие Правила, не обязаны признавать официальные утверждения типа, предоставленные на основании дополнения 2 к поправкам серии 04 к настоящим Правилам, если характеристики испытательного трека для измерения эффективности сцепления шин в новом состоянии с мокрым дорожным покрытием не были установлены с использованием следующих эталонных шин:

Класс шины	Эталонные шины
C2	СЭИШ16С
C3	СЭИШ19,5 с узкими прорезями или СЭИШ22,5 с узкими прорезями

>>

Приложение 1

Пункт 8.1 изменить следующим образом:

«8.1 Уровень звука шины репрезентативного размера — см. пункт 2.7 настоящих Правил — согласно пункту 7 протокола испытания, приведенного в добавлении 1 к приложению 3: дБ(A) при контрольной скорости 70 км/ч или 80 км/ч $^2\text{»}$.

Включить новый пункт 8.6 следующего содержания:

«8.6 Наличие данных об уровне абразивного износа в случае шин класса C1 (да/нет)²».

Включить новый пункт 8.6.1 следующего содержания:

«8.6.1 Метод испытания с использованием транспортного средства на дорогах общего пользования² или метод испытания на барабане в помещении²».

Приложение 3

Пункт 2.1 изменить следующим образом:

«2.1 Испытательная площадка

[...]

Испытательный трек должен быть таким, чтобы условия распространения звука между источником звука и микрофоном соответствовали условиям свободного звукового поля с уровнем помех не более 1 дБ(А). Эти условия считают выполненными, если в пределах 50 м от центра участка для проведения измерений отсутствуют такие крупные звукоотражающие объекты, как ограды, скалы, мосты или здания. Покрытие испытательного трека и размеры испытательной площадки должны соответствовать стандарту ISO 10844:2021.

[...]»

Пункт 4.2 и его подпункты изменить следующим образом:

- «4.2 Температурная коррекция
- 4.2.1 До даты, указанной в пункте 12.18 настоящих Правил, для шин классов С1 и С2 уровни звука, производимого при качении шины, $L_i(\vartheta_i)$, измеренные при температуре испытательного покрытия ϑ_i (где i означает номер единичного измерения), должны приводиться к контрольной температуре испытательного покрытия ϑ_{ref} посредством температурной коррекции по следующей формуле:

$$L_i(\vartheta_{\text{ref}}) = L_i(\vartheta_i) + K(\vartheta_{\text{ref}} - \vartheta_i),$$

где:

$$\theta_{ref} = 20 \, ^{\circ}\text{C};$$

для шин класса С1 коэффициент К составляет:

$$-0.03$$
 дБ(A)/°С, когда $\vartheta_i > \vartheta_{\text{ref}}$ и

$$-0.06$$
 дБ(A)/°C, когда $\vartheta_i < \vartheta_{ref}$;

для шин класса C2 коэффициент K составляет -0.02 дБ(A)/°C.

4.2.2 Начиная с даты, указанной в пункте 12.19, для шин классов С1 и С2 уровни звука, производимого при качении шины, $L_i(\vartheta_i)$, измеренные при температуре испытательного покрытия ϑ_i (где i означает номер единичного измерения), должны приводиться к контрольной

температуре испытательного покрытия ϑ_{ref} посредством температурной коррекции по следующей формуле:

$$L_i(\vartheta_{\text{ref}}) = L_i(\vartheta_i) - K_1 \cdot \lg\left(\frac{\vartheta_{\text{ref}} + K_2}{\vartheta_i + K_2}\right),$$

где:

$$\theta_{\rm ref} = 20 \, {}^{\circ}{\rm C},$$

а коэффициенты K_1 и K_2 приведены в таблицах ниже.

Шины класса CI	K ₁ (°C)	K ₂ (°C)
Шины, классифицируемые в качестве шин, предназначенных для использования в тяжелых снежных условиях	1,35	2,29
Другие шины	2,25	0

Шины класса С2	K ₁ (°C)	K ₂ (°C)
Шины, классифицируемые в качестве шин, предназначенных для использования в тяжелых снежных условиях	0	0
Другие шины	1,22	0

4.2.3 Независимо от изложенной выше процедуры температурная коррекция может производиться только для окончательного регистрируемого уровня звука, издаваемого при качении шины, L_R , с использованием среднеарифметического значения измеренных температур, если измеренная температура испытательного покрытия изменяется не более чем на 5 °C при всех измерениях, которые необходимы для определения уровня звука на одном комплекте шин. В этом случае описанный ниже регрессионный анализ основывается на нескорректированных уровнях звука, производимого при качении шины, $L_i(\vartheta_i)$.

Никакой температурной коррекции по шинам класса C3 не производится».

Приложение 4 изменить следующим образом:

«Приложение 4

Зарезервировано»

Приложение 5, часть В, пункт 1.1 и его подпункты изменить следующим образом:

«1.1 Характеристики испытательного трека

Поверхность должна быть плотной асфальтовой с равномерным уклоном не более 2% и не должна отклоняться более чем на 6 мм при проверке с использованием трехметровой линейки.

Покрытие испытательной поверхности должно быть однородным с точки зрения срока эксплуатации, состава и степени износа. На испытательной поверхности не должно быть рыхлых материалов или инородных отложений.

Максимальный размер скола должен составлять от 8 до 13 мм.

Средняя глубина текстуры, измеряемая по методу, указанному в стандарте ASTM E 965-96 (подтвержденном в 2006 году), должна составлять (0.7 ± 0.3) мм.

1.1.1 Величину поверхностного трения на мокром треке определяют при помощи одного или другого из указанных ниже методов в зависимости от класса потенциальной шины и метода (с использованием прицепа или транспортного средства).

Клас шины	СЭИШ	Метод с использованием прицепа, диапазон значений μ _{peak}	Метод с использованием транспортного средства, диапазон значений BFC
C2, C3	СЭИШ16	0,65-0,90	-
C2	СЭИШ16С	0,44-0,77	0,36-0,69
C3	СЭИШ19,5, СЭИШ22,5	0,51-0,67	0,35-0,61
C3	СЭИШ19,5 с узкими прорезями, СЭИШ22,5 с узкими прорезями	0,52-0,68	0,36–0,62

1.1.1.1 Метод, предполагающий использование стандартной эталонной испытательной шины СЭИШ16

С использованием метода, описанного в пункте 4.2 части А настоящего приложения, в той же зоне, где измерялась средняя глубина текстуры, проводят одно испытание на торможение эталонной шины, состоящее из по крайней мере шести (6) испытательных прогонов в одном и том же направлении.

Производят оценку результатов испытания на торможение, как это предусмотрено в пунктах 4.2.8.1 и 4.2.8.2 части А настоящего приложения. Если коэффициент разброса $CV\mu$ превышает 4 %, результаты не учитывают и испытание на торможение повторяют.

Среднее арифметическое ($\overline{\mu}_{\rm peak}$) измеренных значений пиковых коэффициентов тормозной силы корректируют с учетом температурного воздействия следующим образом:

$$\mu_{\text{peak,corr}} = \overline{\mu_{\text{peak}}} + a \cdot (\vartheta - \vartheta_0),$$

где:

 ϑ — температура мокрой поверхности трека в градусах Цельсия,

$$a = 0.002 \, ^{\circ}\text{C}^{-1}$$
 и $\theta_0 = 20 \, ^{\circ}\text{C}$.

Скорректированный по температуре средний пиковый коэффициент тормозной силы ($\mu_{\text{peak,corr}}$) должен составлять не менее 0,65 и не более 0,90.

Испытание проводят с использованием тех полос движения и той длины испытательного трека, которые предусмотрены для измерения показателя сцепления с мокрым дорожным покрытием.

В случае применения метода с использованием прицепа испытание проводится таким образом, чтобы торможение начиналось на расстоянии $10\,\mathrm{m}$ от места измерения характеристик поверхности.

1.1.1.2 Метод, предполагающий использование стандартной эталонной испытательной шины СЭИШ16С, СЭИШ19,5, СЭИШ22,5, СЭИШ19,5 с узкими прорезями, СЭИШ22,5 с узкими прорезями

1.1.1.2.1 С использованием метода, описанного в пункте 2.1 части В настоящего приложения, в той же зоне, где измерялась средняя глубина текстуры, проводят одно испытание на торможение эталонной шины, состоящее из по крайней мере восьми (8) зачетных испытательных прогонов в одном и том же направлении в ходе одного и того же испытания.

Производят оценку результатов испытания на торможение, как это предусмотрено в пунктах 2.1.2.12 и 2.1.2.13 части В настоящего приложения. Если коэффициент разброса $CV\mu$ превышает 5 %, результаты не учитывают и испытание на торможение повторяют.

Корректировку по температуре не проводят.

Средний пиковый коэффициент тормозной силы ($\overline{\mu}_{peak}$) должен находиться в диапазоне, указанном в таблице в пункте 1.1.1.

Испытание проводят с использованием тех полос движения и той длины испытательного трека, которые предусмотрены для измерения показателя сцепления с мокрым дорожным покрытием.

1.1.1.2.2 С использованием метода, описанного в пункте 2.2 части В настоящего приложения, в той же зоне, где измерялась средняя глубина текстуры, проводят одно испытание на торможение эталонной шины, состоящее из по крайней мере шести (6) зачетных испытательных прогонов в одном и том же направлении в ходе одного и того же испытания.

Производят оценку результатов испытания на торможение, как это предусмотрено в пунктах 2.2.2.7.1, 2.2.2.7.2 и 2.2.2.7.4 части В настоящего приложения. Если коэффициент разброса CV_{BFC} превышает 3 %, результаты не учитывают и испытание на торможение повторяют.

Корректировку по температуре не проводят.

Коэффициент тормозной силы (\overline{BFC}) должен находиться в диапазоне, указанном в таблице в пункте 1.1.1.

Испытание проводят с использованием тех полос движения и той длины испытательного трека, которые предусмотрены для измерения показателя сцепления с мокрым дорожным покрытием».

Пункт 1.4 изменить следующим образом:

«1.4 Для того чтобы охватить все размеры шин, предназначенных для коммерческих транспортных средств, с целью измерения относительного коэффициента сцепления с мокрым дорожным покрытием используют стандартные эталонные испытательные шины (СЭИШ), как показано в следующей таблице:

Для шин класса СЗ СЭИШ19,5, СЭИШ22,5, СЭИШ19,5 с узкими прорезями или СЭИШ22,5 с узкими прорезями

> Для шин класса C2 СЭИШ16С

> > **>>**

Пункт 2.1.2.13 изменить следующим образом:

«2.1.2.13 Проверка результатов

Для эталонной шины:

а) если коэффициент разброса пикового коэффициента тормозной силы CV_{μ} эталонной шины, рассчитанный по формуле из пункта 4.2.8.2 части А настоящего приложения, выше 5 %, то все данные не учитываются и испытание для этой эталонной шины повторяют;

b) средние пиковые коэффициенты тормозной силы ($\overline{\mu_{peak}}$, см. пункт 1.1.1.2.1 настоящего приложения), рассчитанные по первоначальному и заключительному испытаниям на торможение эталонной шины в рамках испытательного цикла, должны находиться в диапазоне, указанном в таблице в пункте 1.1.1.

Если одно или более из вышеуказанных условий не соблюдаются, то весь испытательный цикл проводят заново.

Для потенциальных шин:

[...]»

Пункт 2.1.2.14 изменить следующим образом:

«2.1.2.14 Коэффициент сцепления с мокрым дорожным покрытием (G) рассчитывают следующим образом:

коэффициент сцепления с мокрым дорожным покрытием (G) = $f \cdot \frac{\mu_{peak\ ave}(T)}{\mu_{peak\ ave}(R)}$,

где:

Для шин класса С2 СЭИШ16С				
f = 1				
Для ши	н класса С3			
СЭИШ19,5, СЭИШ22,5 СЭИШ19,5 с узкими прорезями, СЭИШ22,5 с узкими прорезями				
f = 1 $f = 1,02$				

f поправочный коэффициент, значение которого зависит от используемой СЭИШ.

Он представляет собой относительный коэффициент сцепления с мокрым дорожным покрытием, характеризующий эффективность торможения потенциальной шины (T) по сравнению с эталонной шиной (R)».

Пункт 2.2.4 изменить следующим образом:

«2.2.2.4 Нагрузка на шину

Статическая нагрузка на каждую ось должна оставаться неизменной в процессе осуществления всей процедуры испытания. Статическая нагрузка на каждую шину оси, выраженная в процентах от номинальной статической нагрузки и округленная до ближайшего целого числа, должна находиться в пределах 60–100 % от несущей способности СЭИШ и потенциальной шины.

Нагрузки на шины на одной и той же оси не должны различаться более чем на 10 %.

Монтаж в соответствии с конфигурациями 2 и 3 должен отвечать следующим дополнительным требованиям:

конфигурация 2: нагрузка на переднюю ось > нагрузки на заднюю ось.

Задняя ось может быть оснащена двумя или четырьмя шинами;

конфигурация 3: нагрузка на заднюю ось > нагрузки на переднюю ось x 1,8».

Пункт 2.2.2.7.2 изменить следующим образом:

«2.2.2.7.2 Проверка результатов

Для эталонной шины:

а) если коэффициент разброса «AD» для каждых двух последовательных групп из 3 прогонов эталонной шины выше 3 %, то все данные не учитываются и испытание повторяют для всех шин (потенциальных шин и эталонных шин). Коэффициент разброса рассчитывают по следующей формуле:

b) средние коэффициенты тормозной силы (*BFC*, см. пункт 1.1.1.2.2 настоящего приложения), рассчитанные по первоначальному и заключительному испытаниям на торможение эталонной шины в рамках испытательного цикла, должны находиться в диапазоне, указанном в таблице в пункте 1.1.1.

Если одно или более из вышеуказанных условий не соблюдаются, то весь испытательный цикл проводят заново.

Для потенциальных шин:

коэффициенты разброса рассчитывают для всех потенциальных шин.

Если один из коэффициентов разброса выше 3 %, то данные для этой потенциальной шины не учитываются и испытание повторяют».

Пункт 2.2.2.7.5 изменить следующим образом:

«2.2.2.7.5 Расчет относительного коэффициента сцепления с мокрым дорожным покрытием

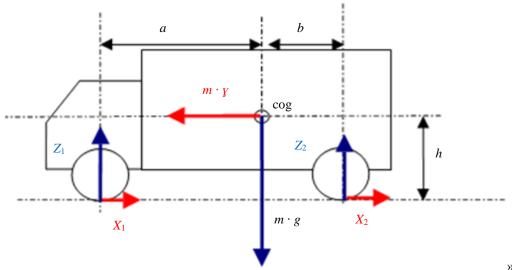
Коэффициент сцепления с мокрым дорожным покрытием представляет собой относительную характеристику потенциальной шины по сравнению с эталонной шиной. Способ его расчета зависит от конфигурации испытания согласно пункту 2.2.2.2 настоящего приложения. Коэффициент сцепления шины с мокрым дорожным покрытием, G, рассчитывают в соответствии с таблицей 7:

Таблица 7

Конфигурация С1: потенциальные шины на обеих осях	$G = f \cdot \frac{BFC(T)}{BFC(R)}$
Конфигурация С2: потенциальные шины на передней оси и эталонные шины на задней оси	$G = f \cdot \frac{{}_{BFC(T) \cdot [a+b+h \cdot BFC(R)] - a \cdot BFC(R)}}{{}_{BFC(R) \cdot [b+h \cdot BFC(T)]}}$
Конфигурация С3: эталонные шины на передней оси и потенциальные шины на задней оси	$G = f \cdot \frac{BFC(T) \cdot [-a - b + h \cdot BFC(R)] + b \cdot BFC(R)}{BFC(R) \cdot [-a + h \cdot BFC(T)]}$

где:

Для шин класса С2 СЭИШ16С						
f =	<i>f</i> = 1					
Для шин к	Для шин класса С3					
СЭИШ19,5, СЭИШ22,5 СЭИШ19,5 с узкими прорезями, СЭИШ22,5 с узкими прорезями						
f = 1 $f = 1,02$						


где (см. также рис. 1):

- f поправочный коэффициент, значение которого зависит от используемой СЭИШ;
- cog центр тяжести груженого транспортного средства;
- *m* масса (в кг) груженого транспортного средства;
- *а* горизонтальное расстояние между передней осью и центром тяжести груженого транспортного средства (м);
- *b* горизонтальное расстояние между задней осью и центром тяжести груженого транспортного средства;
- h вертикальное расстояние от поверхности земли до центра тяжести груженого транспортного средства (м).

Примечание: когда значение h точно не известно, применяют следующие значения, соответствующие наихудшему сценарию: 1,2 для конфигурации C2 и 1,5 для конфигурации C3.

- у ускорение груженого транспортного средства [$m \cdot c^{-2}$];
- g ускорение свободного падения [м·с⁻²];
- X_1 продольная (по направлению оси X) реакция передней шины на дороге;
- X_2 продольная (по направлению оси X) реакция задней шины на дороге;
- Z_1 перпендикулярная (по направлению оси Z) реакция передней шины на дороге;
- Z_2 перпендикулярная (по направлению оси Z) реакция задней шины на дороге.

Рис. 1 Схематическое разъяснение, касающееся коэффициента сцепления шины

>>>

Пункт 2.2.2.8.4 изменить следующим образом:

«2.2.2.8.4 Коэффициент сцепления с мокрым дорожным покрытием потенциальной шины по сравнению с эталонной шиной выводят путем умножения значений относительной эффективности, рассчитанных выше:

(коэффициент сцепления с мокрым дорожным покрытием 1 х коэффициент сцепления с мокрым дорожным покрытием 2)».

Приложение 5, добавление изменить следующим образом:

«Примеры протоколов испытания для определения коэффициента сцепления шин в новом состоянии с мокрым дорожным покрытием

Пример 1: Протокол испытания для определения коэффициента сцепления шин в новом состоянии с мокрым дорожным покрытием на основе метода с использованием прицепа или транспортного средства, оборудованного для испытания шин

Номер протокола		Дат	а ытания:				
испытания:		исп	ытания.				
Трек:						Мин.:	Макс.:
Глубина текстуры (мм):			п. мокрой ерхности (°С):				
$\mu_{peak,corr}^{\qquad \ \ 4)}$			пп. окружающей ды (°C):				
Толщина слоя воды (мм):							
Скорость (км/час):			T		ı		
№	1		2	3	4		5
Марка							
Рисунок/торговое описание	СЭИШ						СЭИШ
Размер							
Эксплуатационное описание							
Исходное (испытательное) давление в шине ¹⁾ , (кПа)							
Идентификационный номер шины							
Маркировка М+S (да/нет)							
Маркировка 3PMSF (да/нет)							
Обод							
Нагрузка (кг)							

№		1	2	3	4	5
Давление (кПа)						
	1					
	2					
	3					
	4					
μ_{peak}	5					
	6					
	7					
	8					
$\overline{\mu_{peak}}$						
Стандартно отклонение						
<i>CV</i> µ ≤ 4 %	2)					
$CVal(\mu_{peak})$	≤ 5 % ³⁾					
$\mu_{\text{peak,corr}}(R)$						
$\mu_{peak,adj}(R)$						
f						
Коэффициент сцепления с мокрым дорожным покрытием						
Темп. мокрой поверхности (°С):						
Темп. окружающей среды (°C):						
Замечания						

 $^{^{1)}}$ Для шин классов C2 и C3: соответствующее указанному давлению в маркировке на боковине согласно пункту 4.1 настоящих Правил.

 $^{^{2)}}$ Для шин классов С2 и С3: предельное значение составляет 5 %.

 $^{^{3)}}$ Для шин классов С2 и С3: коэффициент $\mathit{CVal}(\mu_{\mathsf{peak}})$ не определяется и не применяется.

⁴⁾ Для шин классов C2 и C3: в случае применения пункта 1.1.1.2 корректировку по температуре не проводят.

Пример 2: Протокол испытания для определения коэффициента сцепления шин в новом состоянии с мокрым дорожным покрытием на основе метода с использованием транспортного средства

Номер протокола испытания:		Дата испытан	ия:							
					<u> </u>				ı	
Трек:				M	ин.:	Макс.:		нспортное (ство		
Глубина текстуры (мм):		Темп. мо поверхн	окрой ости (°C):				Мар			
$BFC_{ m ave,corr,l}^{5)}$: или $BFC_{ m ave}$ или $\mu_{ m peak,corr}^{4)}$:		Темп. он среды (°	сружающей С):	Í			Мод	цель:		
BFC _{ave,corr,2} ⁵):							Тип	:		
CVal(BFC _{ave,corr}):							Год реги	страции:		
Толщина слоя воды (мм):								симальная рузка сь:	Передняя	Задняя
Начальная скорость (км/ч):		Конечна (км/ч):	я скорость							
№	1		2		3		4		5	
Марка										
Рисунок/торговое описание	СЭИШ								СЭИШ	
Размер										
Эксплуатационное описание										
Исходное (испытательное) давление в шине 1 , (к Π а)										
Идентификационный номер шины										
Маркировка M+S (да/нет)										
Маркировка 3PMSF (да/нет)										
Обод										
Давление на переднюю ось (кПа)	слева:	справа:	слева:	справа:	слева:	справа:	слева:	справа:	слева:	справа:
Давление на заднюю ось (кПа)	слева:	справа:	слева:	справа:	слева:	справа:	слева:	справа:	слева:	справа:
Нагрузка на переднюю ось (кг)	слева:	справа:	слева:	справа:	слева:	справа:	слева:	справа:	слева:	справа:
Нагрузка на заднюю ось (кг)	слева:	справа:	слева:	справа:	слева:	справа:	слева:	справа:	слева:	справа:

№		1		2		3		4		5	
		Тормозной путь (м)	BFC_i								
Измерение	1										
	2										
	3										
	4										
	5										
	6										
	7										
	8										
	9										
	10										
$\overline{BFC_{ave}}$											
Стандартное о _{в FC}	отклонение,										
$CV_{BFC} \le 4 \%^{-2}$)										
$CVal(BFC_{ave})$	≤ 5 % ³⁾		<<	\nearrow	<<	\nearrow	<<		<<		
$BFC_{ave,corr}(R)$				\nearrow	<<	\nearrow	<<		<<		
$BFC_{\rm adj}({ m R})$			<<								<
f				\supset	<	>	<		<		<
Коэффициент с мокрым дор покрытием											
Темп. мокрой поверхности (
Темп. окружа среды (°С):	ющей										
Замечания											

 $^{^{1)}}$ Для шин классов C2 и C3: соответствующее указанному давлению в маркировке на боковине согласно пункту 4.1 настоящих Правил.

Приложение 6

Пункт 2.2 изменить следующим образом:

«2.2 Измерительный обод

Шину монтируют на измерительный обод, выполненный из стали или легкого сплава, с соблюдением следующих требований:

а) для шин класса C1 обод должен иметь ширину, установленную в стандарте ISO 4000-1:2021,

²⁾ Для шин классов С2 и С3: предельное значение составляет 3 %.

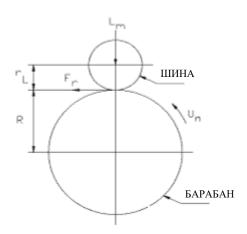
³⁾ Для шин классов C2 и C3: коэффициент $CVal(BFC_{ave})$ не определяется и не применяется.

 $^{^{4)}}$ Для шин классов C2 и C3: в зависимости от применения пункта 1.1.1.1 или 1.1.1.2.

⁵⁾ Для шин классов C2 и C3: коэффициент $BFC_{ave,corr}$ не определяется и не применяется».

b) для шин классов C2 и C3 обод должен иметь ширину, установленную в стандарте ISO 4209-1:2001.

В тех случаях, когда в вышеупомянутых стандартах ИСО ширина не установлена, можно использовать ширину обода, установленную одной из организаций по стандартизации, указанных в добавлении 4».


Пункт 4.5 изменить следующим образом:

«4.5 Измерение и регистрация показаний

Измеряют и регистрируют следующие показания (см. рис.1):

- а) испытательная скорость U_n;
- b) нагрузка на шину перпендикулярно поверхности барабана L_m;
- с) первоначальное испытательное внутреннее давление, определенное в пункте 3.3 выше;
- d) измеренный коэффициент сопротивления качению C_r и его скорректированное значение C_{rc} при 25 °C и диаметре барабана 2 м;
- е) расстояние от оси шины до наружной поверхности барабана в установившемся режиме r_{L} ;
- f) температура окружающего воздуха t_{ать};
- g) радиус испытательного барабана R;
- h) выбранный метод испытания;
- і) испытательный обод (размер и материал);
- шина: размер, изготовитель, тип, идентификационный номер (если таковой существует), индекс категории скорости, индекс нагрузки, номер DOT (Министерство транспорта)».

Рис. 1

Все механические параметры (силы, крутящие моменты) будут ориентированы в соответствии с системами координат, указанными в стандарте ISO 8855:2011.

Направляющие шины должны вращаться в указанном направлении вращения».

Пункты 5.1.1 и 5.1.2 изменить следующим образом:

«5.1.1 Общие условия

Лаборатория проводит измерения, описанные в пункте 4.6.1 выше, для целей методов силы, крутящего момента и мощности, либо измерения,

описанные в пункте 4.6.2 выше, для целей метода замедления, с тем чтобы точно определить в условиях испытания (для данной нагрузки, скорости и температуры) трение на оси вращения шины, аэродинамические потери шины и колеса, трение в подшипниках барабанов (и в соответствующих случаях двигателя и/или сцепления) и аэродинамические потери барабана.

Паразитные потери, связанные с зоной контакта шина/барабан, F_{pl} , выраженные в ньютонах, рассчитывают на основе значений силы F_{t} , крутящего момента, мощности или замедления, как показано в пунктах 5.1.2-5.1.5 ниже.

5.1.2 Метод силы на оси вращения шины

рассчитать: $F_{pl} = F_t (1 r_L/R)$,

где:

F_t сила на оси вращения шины, в ньютонах (см. пункт 4.6.1 выше);

r_L расстояние от оси шины до наружной поверхности барабана в установившемся режиме, в метрах;

R радиус испытательного барабана, в метрах».

Пункт 5.2.1 изменить следующим образом:

«5.2.1 Общие условия

Сопротивление качению F_r , выраженное в ньютонах, рассчитывают с использованием значений, полученных при испытании шины в условиях, указанных в настоящих Правилах, и путем вычитания соответствующих паразитных потерь F_{pl} , полученных в соответствии с пунктом 5.1 выше».

Пункт 6.1 изменить следующим образом:

«6.1 Коэффициент сопротивления качению

Коэффициент сопротивления качению C_r рассчитывают путем деления сопротивления качению на нагрузку на шину:

$$C_r = \frac{F_r}{L_m}$$

где:

 F_r сопротивление качению, в ньютонах;

 L_m испытательная нагрузка, в кH».

Приложение 6, добавление 1, пункт 2.1 изменить следующим образом:

«2.1 Ширина

Для ободьев колес легковых автомобилей (шины класса C1) ширина испытательного обода должна соответствовать ширине измерительного обода, определенного в пункте 6.2.2 стандарта ISO 4000-1:2021.

Для шин грузовых автомобилей и автобусов (классов C2 и C3) ширина обода должна соответствовать ширине измерительного обода, определенного в пункте 5.1.3 стандарта ISO 4209-1:2001.

В тех случаях, когда в вышеупомянутых стандартах ИСО ширина не установлена, можно использовать ширину обода, установленную одной из организаций по стандартизации, указанных в добавлении 4 к приложению 6».

Приложение 7

Пункт 2 изменить следующим образом:

«2. Метод испытания тяги в повороте для шин классов С1 и С2 (испытание тягового усилия в соответствии с пунктом 6.5 b) настоящих Правил)».

Пункт 4.5.1 изменить следующим образом:

«4.5.1 Установить испытательные шины на ободья в соответствии со стандартом ISO 4209-1:2001, используя обычные методы монтажа. Обеспечить надлежащую посадку шин на седло обода путем использования подходящего смазочного материала. Следует избегать чрезмерного использования смазки, чтобы предотвратить проскальзывание шины на ободе колеса».

Пункт 4.8.4 изменить следующим образом:

«4.8.4 Расчет относительного коэффициента сцепления с заснеженным дорожным покрытием

Коэффициент сцепления с заснеженным дорожным покрытием представляет собой относительную характеристику потенциальной шины по сравнению с эталонной шиной.

$$SG(Tn) = f \cdot \frac{\overline{AA_{Tn}}}{wa_{SRTT}},$$

где $\overline{AA_{Tn}}$ — среднее арифметическое значение средних ускорений n-ой испытании потенциальной шины,

а значение f приводится в следующей таблице:

Эталонная шина	Коэффициент
СЭИШ19,5, СЭИШ22,5	f = 1,000
СЭИШ19,5 с узкими прорезями	f = 1,570
СЭИШ22,5 с узкими прорезями	f = 1,680

>>

Пункт 4.9.2 изменить следующим образом:

«4.9.2 Принцип подхода

В основу данного принципа положено использование контрольной шины и двух различных транспортных средств для оценки потенциальной шины в сравнении с эталонной шиной.

Одно транспортное средство может быть оснащено эталонной шиной и контрольной шиной, а другое — контрольной шиной и потенциальной шиной. Все условия соответствуют пункту 4.7 выше.

В ходе первой оценки контрольную шину С сравнивают с эталонной шиной. Полученный результат (коэффициент сцепления с заснеженным дорожным покрытием SG1) представляет собой относительную эффективность контрольной шины по сравнению с эталонной шиной.

$$SG1 = f \cdot \frac{\overline{AA_{C}}}{wa_{SRTT}}$$

В ходе второй оценки потенциальную шину Тп сравнивают с контрольной шиной С. Полученный результат (коэффициент сцепления с заснеженным дорожным покрытием SG2) представляет собой относительную эффективность потенциальной шины по сравнению с контрольной шиной.

$$SG2 = \frac{\overline{AA_{\text{Tn}}}}{\overline{AA_{\text{C}}}}$$

Вторая оценка проводится на том же треке, что и первая. Температура воздуха должна быть в диапазоне \pm 5 °C от температуры первой оценки.

Комплект контрольных шин должен быть тем же, что и комплект, использованный для первой оценки.

Коэффициент сцепления с заснеженным дорожным покрытием потенциальной шины по сравнению с эталонной шиной выводят путем умножения значений относительной эффективности, рассчитанных выше:

$$SG = SG1 \cdot SG2$$

>>

Приложение 7, добавление 3, часть 5 изменить следующим образом:

«5. Результаты испытаний: среднее значений ускорения (м/с²)

Номер прогона	Технические требования	СЭИШ (1-е испытание)	Потенциальная шина 1	Потенциальная шина 2	Потенциальная шина 3	СЭИШ (2-е испытание)
1						
2						
3						
4						
5						
6						
Среднее значение						
Стандартное отклонение						
Коэффициент проскальзывания (в процентах)						
Коэффициент разброса	<i>CV_{AA}</i> ≤ 6 %					
Коэффициент проверки	<i>CVal</i> _{AA} (СЭИШ) ≤ 6 %					
Средневзвешенное значение СЭИШ						
f						
Коэффициент сцепления с заснеженным дорожным покрытием		1,00				

 $^{^{1)}}$ Соответствующее указанному давлению в маркировке на боковине согласно пункту 4.1 настоящих Правил.

²⁾ См. значение нагрузки на одну шину».

Приложение 8

Пункт 2.1.3.1 изменить следующим образом:

«2.1.3.1 Стандартная эталонная испытательная шина

Для целей оценки эффективности шин класса С1 на льду используют стандартную эталонную испытательную шину СЭИШ16. Эталонная шина должна быть не старше 30 месяцев, считая с недели, в которую она была произведена, и должна храниться в соответствии с требованиями стандарта ASTM F2493 — 23».

Пункт 2.1.3.2.1 изменить следующим образом:

«2.1.3.2.1 Установить каждую испытательную шину на официально утвержденный обод в соответствии со стандартом ISO 4000-1:2021, используя обычные методы монтажа. С учетом вышеизложенного код ширины обода не должен отличаться более чем на 0,5 от кода ширины измерительного обода. Если для испытуемого транспортного средства серийно выпускаемого обода не имеется, допустимо использовать обод, код ширины которого отличается от кода ширины измерительного обода на 1,0. Обеспечить надлежащую посадку шин на седло обода путем использования подходящего смазочного материала. Следует избегать чрезмерного использования смазки, чтобы предотвратить проскальзывание шины на ободе колеса».

Пункт 2.4.5.1.2 изменить следующим образом:

«2.4.5.1.2 В случае контрольной шины должно выдерживаться пороговое значение коэффициента сцепления на льду, определенное в пункте 6.5.2 настоящих Правил».

Приложение 9

Пункт 2.1.8 изменить следующим образом:

«2.1.8 "Центральная зона" означает зону по ширине протектора, определяемую как ³/₄ (75 %) эталонной ширины протектора (*C*), измеряемую симметрично от центральной линии (см. рис. 4)».

Пункт 2.1.10 изменить следующим образом:

«2.1.10 "Линия разъема пресс-формы" означает границу по окружности шины, на которой сегменты пресс-формы для формирования рисунка протектора соединяются с боковыми пластинами пресс-формы. Если линия разъема пресс-формы на шине не видна, то воображаемой линией разъема пресс-формы считается окружная линия в эквивалентном месте по концам плечевых канавок (см. рис. 1)».

Пункт 2.2.1.2.1 изменить следующим образом:

«2.2.1.2.1 Выбор контрольных точек измерения в центральной зоне

Для контроля соответствия процесса подготовки (см. пункт 2.2.1.2.3) выбирают n точек измерения в центральной зоне, в поперечном направлении (см. рис. 3):

[...]»

Приложение 9, добавление 1 изменить следующим образом:

«[…]

Измерение шероховатости

Среднее арифметическое абсолютных значений высоты профиля шероховатости (мкм)		Участки					
		1	2	3	4		
я м н 1 (справа)							
Леста ерени еречн оавлен	2 (в центре)						
У МЕЙ НЕ З (СЛЕВА)							
Среднее значение							

>>

Включить новое приложение 10 следующего содержания:

«Приложение 10

Процедура определения характеристик абразивного износа шин класса С1

Введение

Для расчета индекса абразивного износа потенциальной шины уровень абразивного износа потенциальной шины сравнивают с уровнем абразивного износа стандартной эталонной испытательной шины. Он измеряется одним из следующих методов:

- методом испытания с использованием транспортного средства на дорогах общего пользования;
- b) методом испытания на барабане в помещении.
- 1. Метод испытания а) с использованием транспортного средства на дорогах общего пользования
- 1.1 Область применения

Этот метод применяется к шинам класса C1, подпадающим под действие настоящих Правил, за исключением ледовых шин и шин с кодом номинального диаметра обода ≤ 13 .

- 1.2 Определения
 - В дополнение к соответствующим определениям, приведенным в пункте 2 настоящих Правил, применяются нижеследующие определения.
- 1.2.1 "Кольцевой маршрут" означает участок трассы, начальная и конечная точки которого совпадают. Если пробег по одному и тому же кольцевому маршруту выполняется по часовой стрелке и против часовой стрелки, то считается, что речь идет о двух кольцевых маршрутах.
- 1.2.2 Под "*трассой*" понимаются дороги, которые будут использоваться для испытания на абразивный износ. Трасса может состоять из одного или нескольких кольцевых маршрутов, пробег по которым может выполняться в любом порядке.
- 1.2.3 "Смена" означает период времени, необходимый для прохождения трассы (включая время перерыва, время смены транспортных средств, образующих колонну, и время движения транспортного средства).

- 1.2.4 "Общее расстояние" это общее расстояние, пройденное шиной за испытание.
- 1.2.5 Под "электрическим приводом" понимается устройство, преобразующее электрическую энергию в механическую, а механическую энергию в электрическую.
- 1.2.6 "Категория устройства преобразования энергии в тягу" означает і) двигатель внутреннего сгорания, іі) электрический привод либо ііі) топливный элемент.
- 1.2.7 "Гибридный электромобиль (ГЭМ)" это гибридное транспортное средство, в котором одним из устройств преобразования энергии в тягу является электрический привод.
- 1.2.8 "Гибридное транспортное средство" это транспортное средство, оборудованное силовым агрегатом, содержащим не менее двух различных категорий устройств преобразования энергии в тягу и не менее двух различных категорий систем накопления тяговой энергии.
- 1.2.9 "Гибридный электромобиль, заряжаемый от бортового зарядного устройства (ГЭМ-БЗУ)" это гибридный электромобиль, который не предусматривает возможность зарядки от внешнего источника.
- 1.2.10 "Гибридный электромобиль, заряжаемый от внешнего зарядного устройства (ГЭМ-ВЗУ)" это гибридный электромобиль, который предусматривает возможность зарядки от внешнего источника.
- 1.2.11 "Полный электромобиль (ПЭМ)" это транспортное средство, оборудованное силовым агрегатом, содержащим в качестве устройств преобразования энергии в тягу исключительно электрические приводы, а в качестве систем накопления тяговой энергии исключительно перезаряжаемые системы аккумулирования электрической энергии (ПСАЭЭ).
- 1.2.12 "Транспортное средство, работающее только от двигателя внутреннего сгорания (ДВС)" это транспортное средство, у которого все преобразователи энергии в тягу представляют собой двигатели внутреннего сгорания.
- 1.2.13 "Тяговая ПСАЭЭ" означает перезаряжаемую энергоаккумулирующую систему, которая обеспечивает подачу электроэнергии для создания электрической тяги.
- 1.2.14 "*Транспортное средство с передним приводом*" означает транспортное средство, в котором тяговое усилие передается только на переднюю ось.
- 1.2.15 "*Транспортное средство с задним приводом*" означает транспортное средство, в котором тяговое усилие передается только на заднюю ось.
- 1.2.16 "Транспортное средство с подключаемым полным приводом" означает транспортное средство, в котором водитель может отключить тяговое усилие, передаваемое на одну из осей.
- 1.2.17 "Полноприводное транспортное средство" означает транспортное средство с постоянным или автоматически подключаемым полным приводом.
- 1.2.18 Под "контрольным транспортным средством" понимается транспортное средство, на которое будут установлены эталонные шины.
- 1.2.19 Под "потенциальным транспортным средством" понимается транспортное средство, на которое будут установлены потенциальные шины.

- 1.2.20 "Коэффициент f2 транспортного средства" (измеряется в $H/(\kappa M/\tau)^2$) это коэффициент дорожной нагрузки второго порядка согласно Правилам № 154 ООН. Он определяется при исходных условиях.
- 1.2.21 "Продольное ускорение" (измеряется в м/с²) это ускорение в направлении движения транспортного средства. Продольное ускорение имеет положительный знак при увеличении скорости и отрицательный при ее уменьшении (например, при торможении).
- 1.2.22 "Боковое ускорение" (измеряется в м/с²) это ускорение, перпендикулярное направлению движения транспортного средства. Боковое ускорение имеет положительный знак при повороте налево по направлению движения транспортного средства и отрицательный при повороте направо по направлению движения транспортного средства.
- 1.2.23 Под "*испытательной шиной*" понимается либо потенциальная, либо эталонная шина.
- 1.2.24 "Потенциальная шина" означает шину, характеристики абразивного износа которой оцениваются по отношению к характеристикам абразивного износа эталонной шины.
- 1.2.25 "Эталонная шина" означает шину, которая будет использоваться в каждой колонне транспортных средств в качестве эталона для оценки характеристик абразивного износа потенциальной шины, в соответствии со следующей таблицей:

	Эталонная шина			
Потенциальная ш	ина	СЭИШ17Ѕ	СЭИШ17W	
Обычная шина		X		
Зимняя шина			X	
	Зимняя шина, классифицируемая в качестве шины, предназначенной для использования в тяжелых снежных условиях		Х	
Шина специального назначения		X		
	"M+S", "M.S" или "M&S"		X	
	Шина специального назначения, классифицируемая в качестве шины, предназначенной для использования в тяжелых снежных условиях		X	

1.3 Условные обозначения и сокращенные термины

Условное обозначение	Единица измерения	Наименование
AICT	Безразмерная величина	Индекс абразивного износа потенциальной шины
ALC	мг/км/т	Уровень абразивного износа потенциальной шины в условиях испытания
ALRT	мг/км/т	Уровень абразивного износа эталонной шины в условиях испытания

Условное обозначение	Единица измерения	Наименование
ARC	мг/км	Степень абразивного износа потенциальной шины в условиях испытания
ARR	мг/км	Степень абразивного износа эталонной шины в условиях испытания
D_{Ci}	KM	Общее расстояние, пройденное потенциальным транспортным средством во время испытания
D_{Ri}	KM	Общее расстояние, пройденное контрольным транспортным средством во время испытания
$MCTF_i$	Γ	Конечная масса потенциальной шины і
$MCTS_i$	Γ	Первоначальная масса потенциальной шины і
$MRTF_i$	Γ	Конечная масса эталонной шины <i>i</i>
$MRTS_i$	Γ	Первоначальная масса эталонной шины <i>i</i>
O_S	мг/км/т	Смещение линий регрессии уровня абразивного износа эталонной шины СЭИШ17S
O_W	мг/км/т	Смещение линий регрессии уровня абразивного износа эталонной шины СЭИШ17W
Q_{Ci}	КГ	Испытательная нагрузка для каждой потенциальной шины
Q_{Ri}	КГ	Испытательная нагрузка для каждой эталонной шины
S_S	мг/км/т/°С	Чувствительность СЭИШ17S к колебанию температуры
S_W	мг/км/т/°С	Чувствительность СЭИШ17W к колебанию температуры
T_i	°C	Среднее значение температуры в ходе испытания
\overline{T}	°C	Среднее значение температуры в ходе n-ого числа испытаний

- 1.4 Контрольно-измерительные приборы
- 1.4.1 Приборы для измерения массы шины

Весы должны обеспечивать измерение массы шины с точностью $\pm~2~$ г.

- 1.4.2 Приборы для регулировки и измерения развала на транспортном средстве Обеспечиваемая устройством точность должна составлять $\pm 0.033^{\circ}$.
- 1.4.3 Приборы для измерения массы транспортного средства в каждом положении

Весы должны обеспечивать измерение нагрузки на каждую шину с точностью $\pm~0,1~\%$.

1.4.4 Приборы для измерения ускорения, расстояния и скорости

Во время испытания проводят непрерывную оценку скорости, а также бокового и продольного ускорений с рекомендуемой частотой дискретизации не менее $10~\Gamma$ ц. Для целей измерения используют Глобальную навигационную спутниковую систему (ГНСС, определенная в стандарте ISO 24245:2023) с числовой обработкой данных о местоположении. Порядок числовой обработки данных, полученных с помощью ГНСС, см. в добавлении $1~\kappa$ настоящим Правилам.

Пройденное шиной расстояние должно равняться сумме расстояния, зафиксированного с помощью ГНСС, и расстояния, пройденного без сигнала ГНСС, если только последнее не оценивается ГНСС.

Использование акселерометров не допускается.

1.4.5 Устройство для измерения давления в шинах

Обеспечиваемая устройством точность должна составлять $\pm 3 \text{ к}\Pi a$.

1.4.6 Приборы для измерения с учетом погодных факторов (дождь, снег, обледенение)

В случае дождя водители-испытатели сообщают километраж, пройденный за каждую смену с работающими (т. е. фактически вытирающими ветровое стекло) стеклоочистителями.

В случае снега/обледенения водители-испытатели сообщают километраж, пройденный за каждую смену по дороге, покрытой снегом или льдом.

1.4.7 Приборы для измерения температуры

Можно использовать термометр транспортного средства с выносным датчиком. Данные записываются с указанием времени и места на бумаге или в электронном файле. Допускается также использование любого термометра, предназначенного для измерения температуры атмосферного воздуха. Точность измерения термометра должна составлять \pm 1 °C. Допускается использование устройства непрерывного измерения, регистрирующего температуру, при условии, что оно обеспечивает вышеуказанную точность измерения.

Начальное и конечное измерения проводят с помощью калиброванного термометра.

1.4.8 Приборы для измерения массы шины в сборе с ободом

Весы должны обеспечивать измерение массы шины с точностью ± 2 г.

- 1.5 Процедура измерения применительно к шине, шине в сборе с ободом и транспортному средству
- 1.5.1 Измерение массы шины

Перед измерением массы шину очищают — с использованием устройства или применением средства, которое не удаляет резину с шины (например, неабразивного очистителя на водной основе), — и высушивают. Перед измерением массы из протектора извлекают любые застрявшие в нем видимые камешки. Измерение проводят 3 раза с усреднением полученных результатов.

1.5.2 Измерение массы шины в сборе с ободом

Перед измерением массы шину в сборе очищают — с использованием устройства или применением средства, которое не удаляет резину с шины (например, неабразивного очистителя на водной основе), — и высушивают. Перед измерением массы из протектора извлекают любые застрявшие в нем видимые камешки, причем шина должна находиться не под давлением и быть без сердечника вентиля.

Измерение массы проводят после проверки наличия на колесе в сборе всех балансировочных грузиков.

1.5.3 Процедура измерения массы транспортного средства

Перед измерением транспортное средство с полным топливным баком (транспортное средство с ДВС), испытательным балластом согласно пункту 1.6 настоящего приложения, оснащенное испытуемыми шинами, смонтированными на колесах, используемых для испытания, и массой, соответствующей средней массе тела водителя (75 кг), очищают и высушивают. Измеряют нагрузку Q, приходящуюся на каждое колесо.

1.5.4 Процедура измерения геометрии колес транспортного средства

Измерение геометрии колес проводят на транспортном средстве с полным топливным баком (транспортное средство с ДВС), испытательным балластом согласно пункту 1.6 настоящего приложения,

оснащенном испытуемыми шинами, смонтированными на колесах, используемых для испытания, и массой, соответствующей средней массе тела водителя (75 кг).

1.6 Требования в отношении транспортного средства

1.6.1 Общие требования

Регулировку выполняют следующим образом:

- измеряют и регистрируют значения параметров регулировки на транспортных средствах в условиях нагрузки, указанных в пункте 1.5.4;
- b) в ходе испытания ведется мониторинг значений, замеренных в условиях нагрузки, которые служат в качестве контрольных значений, подлежащих соблюдению при испытаниях.

Параметры регулировки (схождение и развал) на обеих осях контрольного транспортного средства и каждого потенциального транспортного средства проверяют как минимум:

- в начале испытания. От момента регулировки до начала испытания транспортное средство должно пройти не более 50 км;
- d) факультативно после прохождения половины расстояния;
- e) в случае столкновения, которое может сказаться на регулировке (например, соприкосновение с бордюрным камнем и т. д.);
- f) по окончании испытания. После завершения испытания до момента регулировки транспортное средство должно пройти не более 50 км;
- g) при прохождении любого дополнительного расстояния до станции измерения геометрии колес использование эталонных или потенциальных шин не допускается.

По завершении испытания схождение не должно отличаться более чем на \pm 0,15°, а развал — на \pm 0,3° от значений, первоначально замеренных при тех же условиях.

- 1.6.2 Настройка подвески и статическая регулировка, приемлемые для транспортных средств с передним приводом
- 1.6.2.1 Транспортные средства, используемые для установки потенциальных шин, в условиях нагрузки, указанных в пункте 1.5.4:
 - а) задаваемый угол положительного/отрицательного схождения каждого колеса на передней оси составляет $0\pm0,1^\circ;$
 - b) угол развала каждого колеса на передней оси задается в диапазоне от -1,2 до $0^{\circ};$
 - с) угол положительного/отрицательного схождения каждого колеса на задней оси задается в диапазоне 0,05–0,15°;
 - d) угол развала каждого колеса на задней оси задается в диапазоне от -1.9 до -0.6° .
- 1.6.2.2 Транспортные средства, используемые для установки эталонных шин, в условиях нагрузки, указанных в пункте 1.5.4:
 - а) задаваемый угол положительного/отрицательного схождения каждого колеса на передней оси составляет $0\pm0.05^\circ$;
 - b) угол развала каждого колеса на передней оси задается в диапазоне от -1,2 до $0^{\circ};$

- с) угол положительного/отрицательного схождения каждого колеса на задней оси задается в диапазоне от 0,05 до 0,15°;
- d) угол развала каждого колеса на задней оси задается в диапазоне от -1.9 до -0.6° ;
- е) кроме того, абсолютная величина положительного/ отрицательного схождения не должна превышать значения, используемые для колес на передней оси испытуемых транспортных средств.
- 1.6.3 Настройка подвески и статическая регулировка, приемлемые для транспортных средств с задним приводом
- 1.6.3.1 Транспортные средства, используемые для установки потенциальных шин, в условиях нагрузки, указанных в пункте 1.5.4:
 - а) задаваемый угол положительного/отрицательного схождения каждого колеса на передней оси составляет $0 \pm 0.1^{\circ}$;
 - b) задаваемый угол развала колес на передней оси составляет $0\pm0.1^\circ;$
 - с) задаваемый угол положительного/отрицательного схождения каждого колеса на задней оси составляет $0 \pm 0,1^{\circ}$;
 - d) задаваемый угол развала колес на задней оси составляет $0 \pm 0,1^{\circ}$.
- 1.6.3.2 Транспортные средства, используемые для установки эталонных шин, в условиях нагрузки, указанных в пункте 1.5.4:
 - а) задаваемый угол положительного/отрицательного схождения каждого колеса на передней оси составляет $0\pm0.05^{\circ}$;
 - b) задаваемый угол развала колес на передней оси составляет $0 \pm 0.1^{\circ}$:
 - с) задаваемый угол положительного/отрицательного схождения каждого колеса на задней оси составляет $0\pm0,1^\circ;$
 - d) задаваемый угол развала колес на задней оси составляет $0 \pm 0.1^{\circ}$;
 - е) кроме того, абсолютная величина положительного/ отрицательного схождения не должна превышать значения, используемые для колес на передней оси потенциальных транспортных средств.
- 1.6.4 Настройка подвески и статическая регулировка, приемлемые для транспортных средств с подключаемым полным приводом

Транспортные средства с подключаемым полным приводом могут использоваться при условии, что ведущей является только одна ось. В этом случае они считаются передне- или заднеприводными, в зависимости от конфигурации.

1.6.5 Настройка подвески и статическая регулировка, приемлемые для полноприводных транспортных средств

В случае полноприводных транспортных средств должны соблюдаться настройки для транспортных средств с задним приводом, указанные в пункте 1.6.3 настоящего приложения.

- 1.6.6 Если ни одно транспортное средство не отвечает условиям по пунктам 1.6.2, 1.6.3, 1.6.4 и 1.6.5, то используют следующую процедуру:
 - а) измерение как минимум на 4 различных транспортных средствах (при наличии 4 транспортных средства либо на всех наличных транспортных средствах, если их меньше 4), которые могут быть оснащены потенциальными шинами, должно

- продемонстрировать, что настройка в указанных пределах невозможна. Транспортные средства должны быть произведены 4 разными изготовителями, а их возраст должен составлять менее двух лет;
- b) выбор транспортных средств (как контрольных, так потенциальных) осуществляется по следующим критериям:
 - i) схождение передних колес должно соответствовать указанным выше допускам $(0^{\circ} +/-)$;
 - ii) угол развала передних колес контрольного и потенциального транспортных средств не должен отличаться более чем на 0,5°. Абсолютная величина развала передних колес контрольного транспортного средства не должна превышать соответствующий показатель потенциального транспортного средства;
 - угол развала задних колес контрольного и потенциального транспортных средств не должен отличаться более чем на 0,6°. Абсолютная величина развала задних колес контрольного транспортного средства не должна превышать соответствующий показатель потенциального транспортного средства;
 - iv) угол схождения задних колес контрольного и потенциального транспортных средств не должен отличаться более чем на 0,1°. Абсолютная величина схождения задних колес контрольного транспортного средства не должна превышать соответствующий показатель потенциального транспортного средства;
 - v) кроме того, для потенциальных транспортных средств в условиях нагрузки, указанных в пункте 1.5.3, должны соблюдаться следующие ограничения:
 - а. задаваемый угол положительного/отрицательного схождения каждого колеса на передней оси составляет $0\pm0.1^\circ;$
 - b. угол развала колес на передней оси задается в диапазоне от -1.7 до 0° ;
 - с. угол положительного/отрицательного схождения каждого колеса на задней оси задается в диапазоне от 0.05 до 0.3° ;
 - d. угол развала колес на задней оси задается в диапазоне от -2.7 до 0.3° ;
 - vi) кроме того, для контрольных транспортных средств в условиях нагрузки, указанных в пункте 1.5.3, должны соблюдаться следующие ограничения:
 - а. задаваемый угол положительного/отрицательного схождения каждого колеса на передней оси составляет $0 \pm 0.05^{\circ}$;
 - b. угол развала колес на передней оси задается в диапазоне от -1.7 до 0° ;
 - с. угол положительного/отрицательного схождения каждого колеса на задней оси задается в диапазоне от 0.05 до 0.3° ;

- d. угол развала колес на задней оси задается в диапазоне от -2.7 до 0.3° .
- 1.6.7 Устройство преобразования энергии в тягу, приемлемое для транспортного средства

Разрешены все типы устройств преобразования энергии в тягу при условии их однородности для транспортных средств в колонне. В состав колонны должны входить транспортные средства одного типа с точки зрения степени их электрификации (т. е. ДВС или ГЭМ-БЗУ или ГЭМ-ВЗУ или ПЭМ).

1.6.8 Система трансмиссии, приемлемая для транспортного средства

По возможности, для размера шины, подлежащей испытанию, используют транспортное средство с передним приводом.

Если шина данного размера может быть установлена только на заднеприводное транспортное средство, то используют транспортное средство с задним приводом, причем эталонные шины также устанавливают на заднеприводное транспортное средство.

Если шина данного размера может быть установлена только на полноприводное транспортное средство, то используют полноприводное транспортное средство, причем эталонные шины также устанавливают на полноприводное транспортное средство. По возможности, как для эталонной, так и потенциальной шины используется транспортное средство с одинаковым распределением крутящего момента. В противном случае как для контрольного, так и потенциального транспортного средства выбирают режим по умолчанию.

В состав одной и той же колонны могут входить транспортные средства с автоматической или механической коробкой передач.

1.6.9 Режим вождения транспортного средства

При наличии нескольких режимов вождения выбирают режим вождения по умолчанию, если таковой определен изготовителем транспортного средства.

Если режим вождения по умолчанию изготовителем транспортного средства не определен, то по согласованию с компетентным органом используют репрезентативный режим вождения.

1.6.10 Рекуперативное торможение

Транспортные средства в составе колонны должны характеризоваться аналогичными возможностями в плане рекуперативного торможения. С этой целью выбирают транспортные средства с одинаковой степенью электрификации (см. пункт 1.6.7). При наличии возможности отключить функцию рекуперативного торможения транспортного средства, водитель может сделать это только в том случае, если все транспортные средства в колонне работают в одинаковых условиях рекуперативного торможения.

1.6.11 Приемлемые для транспортного средства аэродинамические характеристики

Аэродинамические характеристики транспортного средства, оснащенного эталонными шинами, должны отвечать следующему требованию:

значение f2 транспортного средства с эталонными шинами не должно превышать 1,2-кратное значение f2 транспортных средств с потенциальными шинами.

Предписание настоящего пункта не применяется, если испытательная станция не располагает данными о значении f2 соответствующих транспортных средств.

1.6.12 Приемлемая масса транспортного средства (в зависимости от размера и индекса нагрузки шин)

Общая масса транспортного средства должна быть такой, чтобы общая нагрузка на шину достигала (67 \pm 7) % от общей номинальной несущей способности 4 шин.

Пример расчета:

предположим, что индекс нагрузки эталонных шин составляет 94, что соответствует максимальной нагрузке в 670 кг.

Тогда общая номинальная нагрузка на 4 эталонные шины будет равняться 670*4 = 2680 кг.

В этом случае масса транспортного средства под нагрузкой составляет 2680*67%=1796 кг с допуском 2680*7%, т. е. ± 188 кг.

Распределение нагрузки между передней и задней осями должно быть следующим:

- а) для переднеприводных транспортных средств:
 - нагрузка на переднюю ось: (56 ± 7) % от общей нагрузки на транспортное средство,
 - нагрузка на заднюю ось: (44 \pm 7) % от общей нагрузки на транспортное средство;
- b) для полноприводных/заднеприводных транспортных средств:
 - нагрузка на переднюю ось: (50 ± 7) % от общей нагрузки на транспортное средство,
 - нагрузка на заднюю ось: (50 ± 7) % от общей нагрузки на транспортное средство.

Разрешается использовать балласт, позволяющий обеспечить более высокие нагрузки, если его масса не превышает 85 % от максимальной полезной нагрузки транспортного средства. Он включает минимальный балластный груз, эквивалентный весу 1,5 пассажиров, включая водителя.

1.6.13 Требования к трассе, ускорению и скорости

Трасса представляет собой замкнутый контур. Транспортные средства возвращаются в пункт отправления своим ходом.

1.6.13.1 Минимальная протяженность трассы

Транспортные средства возвращаются в пункт отправления. Минимальная протяженность дорог различного типа в рамках трассы составляет 300 км. Транспортные средства не должны перевозиться на автомобилевозе, за исключением случаев неисправности транспортного средства/повреждения шины.

1.6.13.2 Распределение стилей вождения

При движении по трассе для каждого из представленных стилей вождения должно соблюдаться следующее соотношение ускорение/расстояние:

- а) дороги, для которых характерен шоссейный стиль вождения:
 - і) более 35 % от общего расстояния;

- ii) стандартное отклонение продольного ускорения должно находиться в диапазоне $0.10-0.45 \text{ м/c}^2$;
- iii) стандартное отклонение бокового ускорения должно находиться в диапазоне $0.15-1.00 \text{ м/c}^2$;
- b) дороги, для которых характерен городской стиль вождения:
 - і) более 25 % от общего расстояния;
 - ii) стандартное отклонение продольного ускорения должно находиться в диапазоне $0.45-0.90 \text{ м/c}^2$;
 - iii) стандартное отклонение бокового ускорения должно находиться в диапазоне $0,40-1,20 \text{ м/c}^2$;
- с) дорогам, для которых характерен стиль вождения по региональным маршрутам, соответствуют точки измерения, не подпадающие ни под один из кластеров, определенных в подпунктах а) и b) настоящего пункта;
- d) кроме того, распределение скоростей движения по трассе должно отвечать следующим условиям:
 - i) скорость ниже 60 км/ч не менее 10 % то общего пройденного расстояния;
 - ii) скорость от 60 до 90 км/ч не менее 25 % то общего пройденного расстояния;
 - iii) скорость не ниже 90 км/ч не менее 35 % то общего пройденного расстояния.

Распределение скоростей движения рассчитывают с использованием данных, регистрируемых по всему пройденному расстоянию с частотой 10 Гц.

1.6.13.3 Общий уровень ускорения

Что касается стандартного отклонения замедления и соответствующих максимальных значений, то применяют нижеследующие положения.

1.6.13.3.1 Стандартное отклонение

- а) продольное ускорение: $0.45 \text{ м/c}^2 \pm 10 \%$;
- b) боковое ускорение: $0.93 \text{ м/c}^2 \pm 10 \%$.

В ходе испытания стандартное отклонение продольного и бокового ускорений для транспортных средств в составе колонны не должно превышать 5 %.

1.6.13.3.2 Максимальное ускорение

- а) продольное ускорение: \pm 5 м/с² для расстояния, составляющего не менее 99,98 % от общего расстояния;
- b) боковое ускорение: \pm 5 м/с² для расстояния, составляющего не менее 99,9 % от общего расстояния.

1.6.14 Требования к скорости

Скорость, измеряемая с допустимым пределом погрешности 10 км/ч, не должна превышать ограничения, установленные правилами соответствующей страны, где расположена трасса, а также не должна превышать 140 км/ч. Максимальная погрешность при измерении пройденного расстояния (включая допуск на точность измерения скорости в 10 км/ч) составляет 0,5 % (40 км при пробеге 8000 км).

1.6.15 Контроль ускорения и скорости в ходе испытания

Во время испытания ведется постоянный контроль ускорения и скорости каждого транспортного средства в колонне.

Подробная информация о расчете ускорения и скорости приводится в добавлении 1 к настоящему приложению.

1.6.16 Уровень абразивного износа на трассе

Для целей пригодности для испытания трасса должна отвечать следующим спецификациям в плане уровня абразивного износа эталонных шин:

- а) СЭИШ17S: уровень абразивного износа на трассе при 20 °C должен находиться в диапазоне от 25 до 75 мг/км/т;
- b) СЭИШ17W: уровень абразивного износа на трассе при 10 °C должен находиться в диапазоне от 25 до 75 мг/км/т.

Если на трассе используются эталонные шины лишь одной категории (например, только СЭИШ17S), то соблюдаться должно только одно из условий, а именно условие, относящееся к используемой на данной трассе эталонной шине.

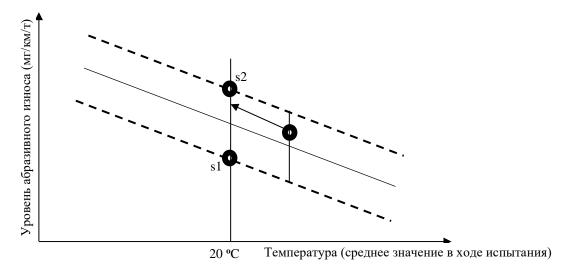


Рис. 1: Уровень абразивного износа при испытании, приведенный к температуре $20\,^{\circ}$ С, должен находиться в пределах s1–s2.

Расчет уровня абразивного износа на трассе производят в соответствии с пунктом 1.6.16.1 настоящего приложения.

- 1.6.16.1 Для измерения уровня абразивного износа эталонных шин применяются следующие положения:
 - а) выбирают по крайней мере одну эталонную шину (СЭИШ17S или СЭИШ17W), замеры на которой производят как минимум при 3 различных значениях температуры, отличающихся друг от друга более чем на 5 °C;
 - b) линейная регрессия дает величину уровня абразивного износа эталонных шин при 20 °C (СЭИШ17S) или 10 °C (СЭИШ17W);
 - с) в случае СЭИШ17S по крайней мере одно измерение проводят при температуре 15–25 °C;
 - d) в случае СЭИШ17W по крайней мере одно измерение проводят при температуре 5–15 °C.

Информация об уровне абразивного износа $ALRT_i$ в мг/км/т при температуре T_i имеется для каждого из (не менее) 3 комплектов эталонных шин, подвергаемых испытанию.

Расчеты обновляют ежеквартально по результатам всех испытаний, проведенных за предыдущие 4 квартала, начиная со второго года после первоначальной аккредитации трассы. Обновление наклонов и смещений исходной линии регрессии допустимо только в том случае, если диапазон температур не выходит за рамки значений, предусмотренных положениями настоящего пункта.

Чувствительность СЭИШ17S и СЭИШ17W к колебаниям температуры в ходе испытания ((" S_S " and " S_W ") (т. е. наклон линии регрессии уровня абразивного износа эталонной шины в зависимости от среднего значения температуры в ходе испытания) рассчитывается по следующему уравнению:

$$S_S = rac{\sum_{i=1}^n (ALRT_i - \overline{ALRT}) imes (T_i - \overline{T})}{\sum_{i=1}^n (T_i - \overline{T})^2}$$
 для СЭИШ17S
$$S_W = rac{\sum_{i=1}^n (ALRT_i - \overline{ALRT}) imes (T_i - \overline{T})}{\sum_{i=1}^n (T_i - \overline{T})^2}$$
 для СЭИШ17W.

Смещения линий регрессии уровня абразивного износа эталонной шины в зависимости от среднего значения температуры в ходе испытания рассчитывают по следующим уравнениям:

$$O_S = \overline{ALRT} - S_S \cdot \overline{T}$$
 для СЭИШ17S
$$O_W = \overline{ALRT} - S_W \cdot \overline{T}$$
 для СЭИШ17W.

Уровни абразивного износа на трассе при соответствующих значениях температуры рассчитывают по следующим уравнениям:

$$R_{ACS} = O_S + S_S \cdot 20$$
 для СЭИШ17S
$$R_{ACW} = O_W + S_W \cdot 10$$
 для СЭИШ17W,

где:

S наклон линии регрессии уровня абразивного износа эталонной шины в зависимости от значений температуры в ходе испытаний;

ALRT $_i$ уровень абразивного износа эталонной шины в условиях испытания, в мг/км/т;

ALRT средний уровень абразивного износа n-ого количества эталонных шин при трех значениях температуры, в мг/км/т;

 T_i среднее значение температуры в ходе испытания, в °С;

 \overline{T} среднее значение температуры в ходе n-ого числа испытаний, в °C.

п число проведенных испытаний.

При использовании трассы для испытания как СЭИШ17S, так и СЭИШ17W, расчет S выполняют для каждой эталонной шины с указанием значений S_S и S_W .

- 1.7 Требования к погодным и климатическим условиям
- 1.7.1 При испытании шин в сравнении с СЭИШ17S согласно таблице, приведенной в пункте 1.2.25 настоящего приложения, должны соблюдаться следующие погодные и климатические условия:
 - а) среднее значение температуры в ходе испытания: в диапазоне от 7 °C до 35 °C;

- b) минимальная и максимальная температура в ходе испытания: в диапазоне от 2 °C до 40 °C для не менее 90 % испытательного расстояния;
- с) езда по снегу или льду не допускается;
- d) пробег в условиях мокрого дорожного покрытия должен составлять не более 20 % от общего расстояния.
- 1.7.2 При испытании шин в сравнении с СЭИШ17W согласно таблице, приведенной в пункте 1.2.25 настоящего приложения, должны соблюдаться нижеследующие погодные и климатические условия.
- 1.7.2.1 Шины, предназначенные для использования в тяжелых снежных условиях:
 - а) среднее значение температуры в ходе испытания: в диапазоне от -3 °C до 20 °C;
 - b) минимальная и максимальная температура в ходе испытания: в диапазоне от -7 °C до 25 °C для не менее 90 % испытательного расстояния;
 - с) пробег по снегу или льду должен составлять не более 5 % от общего пройденного расстояния;
 - d) пробег в условиях мокрого дорожного покрытия должен составлять не более 20 % от общего расстояния.
- 1.7.2.2 Шины, не предназначенные для использования в тяжелых снежных условиях:
 - а) среднее значение температуры в ходе испытания: в диапазоне от -3 °C до 35 °C;
 - b) минимальная и максимальная температура в ходе испытания: в диапазоне от -7 °C до 40 °C для не менее 90 % испытательного расстояния;
 - с) пробег по снегу или льду должен составлять не более 5 % от общего пройденного расстояния;
 - d) пробег в условиях мокрого дорожного покрытия должен составлять не более 20 % от общего расстояния.
- 1.7.3 Регистрация метеорологических данных
- 1.7.3.1 Измерение пробега в условиях мокрого дорожного покрытия

Пробег в условиях мокрого дорожного покрытия, выраженный в процентах от пройденного расстояния, соответствует расстоянию, пройденному при включенных стеклоочистителях. Эти данные могут собираться вручную на одном из транспортных средств в составе колонны. В качестве альтернативы источником данных может служить бортовая информация транспортного средства (например, из шины локальной сети контроллера (ЛКС) или БД-системы), если таковая имеется.

1.7.3.2 Среднее значение температуры

Для расчета среднего значения температуры за каждую смену проводят не менее 5 измерений. Измерениями охватываются место отправления и место прибытия. Кроме того, измеряют температуру в самой высокой точке на трассе. Измерения производят по крайней мере на одном транспортном средстве в колонне.

Среднее значение температуры на трассе рассчитывают путем усреднения значений, полученных по всем 5 точкам измерения.

Измерения — по крайней мере в месте отправления и месте прибытия — проводят с помощью стационарного прибора при соблюдении требуемой точности. Датчик температуры располагают снаружи в свободном пространстве и устанавливают таким образом, чтобы он мог воспринимать потоки воздуха, но был защищен от прямого солнечного излучения. Выполнение последнего требования обеспечивается при помощи любого затеняющего экрана или аналогичного приспособления.

Для проведения измерений на дороге можно использовать установленную в транспортном средстве метеостанцию с выносным датчиком температуры. Допускается непрерывное измерение температуры на протяжении всего испытания. В этом случае применительно ко всему испытанию в протоколе надлежит указать среднее, минимальное и максимальное значения измерений. Первые 10 минут после отправления и после каждого перерыва в работе водителя исключают из расчета минимального, максимального и среднего значений. Допускается использовать среднее значение температуры с привязкой как ко времени, так и к расстоянию.

1.8 Требования к стандартной эталонной испытательной шине

Эталонные шины СЭИШ17S и СЭИШ17W хранят в условиях, рекомендованных в стандартах F3676-23 и F3675-23 соответственно.

СЭИШ17S используют для оценки потенциальных шин категории использования "обычная шина", а также шин категории использования "зимняя шина" или "шина специального назначения", не классифицируемых в качестве шин, предназначенных для использования в тяжелых снежных условиях, равно как шин категории использования "шина специального назначения", не заявленных в качестве шин "M+S".

СЭИШ17W используют для оценки потенциальных шин категорий использования "зимняя шина" и "шина специального назначения", заявленных как шины "M+S", классифицируемых либо не классифицируемых в качестве шин, предназначенных для использования в тяжелых снежных условиях.

- 1.9 Подготовка и регулировка шин
- 1.9.1 Монтаж шины на обод и ее установка на транспортное средство

Новые потенциальные шины монтируют на обод, разрешенный изготовителем шины, и производят их балансировку.

Новые эталонные шины для каждого испытания устанавливают на обод шириной 7,5 дюйма.

Ширину обода потенциальной шины указывают в протоколе испытания. Шины, к установке которых предъявляются специальные требования, например шины с асимметричным или направленным рисунком протектора, монтируют в соответствии с этими требованиями: должно соблюдаться направление вращения, а наружная боковина шины — быть ориентирована в нужную сторону.

1.9.2 Измерение массы шины (без обода)

Измерение массы шины проводят в соответствии с процедурой по пункту 1.5.1 настоящего приложения.

С протектора ни одной из шин (испытательной или эталонной) не удаляется резина (например, следы пресс-формы).

Массу каждой шины измеряют:

- а) перед ее монтажом на обод, с тем чтобы получить первоначальное значение массы эталонных (MRTSi) и потенциальных (MCTSi) пин:
- b) по завершении испытания и после демонтажа шины с обода, с тем чтобы получить конечные значения массы эталонных (*MRTFi*) и потенциальных (*MCTFi*) шин.
- 1.9.3 Измерение массы шины в сборе с ободом

Измерение массы шины в сборе с ободом проводят в соответствии с процедурой по пункту 1.5.2 настоящего приложения.

Промежуточные измерения массы шины в сборе с ободом являются факультативными.

1.9.4 Давление воздуха в шине

Давление воздуха в эталонных шинах составляет 290 кПа.

Потенциальные шины накачивают (в холодном состоянии) до номинального давления, определяемого их стандартом. В частности:

- а) для стандартных шин давление составляет 250 кПа;
- b) для усиленных шин (XL) и шин с повышенной несущей способностью (HL) давление составляет 290 кПа;
- с) номинальное давление для номинальной нагрузки определяется соответствующим стандартом, если оно отличается от указанного в подпунктах а) и b).
- 1.10 Подготовка транспортных средств и производимые на них регулировки

Транспортные средства для установки потенциальных и эталонных шин отбирают с учетом ограничений, предусмотренных в пункте 1.6.

1.10.1 Измерение массы транспортного средства

Измерение массы транспортного средства проводят в соответствии с процедурой по пункту 1.5.3 настоящего приложения. Транспортное средство нагружают балластом с соблюдением технических требований, оговоренных в пункте 1.6.12 настоящего приложения.

Требуется измерить нагрузку Q, приходящуюся на каждую шину контрольного и потенциального транспортных средств.

1.10.2 Регулировка на транспортном средстве

Регулировку геометрии колес транспортного средства проводят в соответствии с положениями, указанными в пунктах 1.6.2–1.6.6 настоящего приложения.

- 1.11 Метод испытания и измерения
- 1.11.1 Общие положения

Испытание на абразивный износ шин проводят на дорогах общего пользования. В колонне может быть не более 4 транспортных средств. Транспортные средства должны проехать около 8000 км по выбранным трассам заданной степени сложности с целью прогона каждой потенциальной шины в одинаковых условиях (например, степень сложности, разные водители, положение в колонне, погода).

Оценку шин проводят в сравнении с эталонной шиной. Эталонные шины устанавливают на одном транспортном средстве в составе колонны, в основном с целью учета колебаний температуры, а также других изменяющихся параметров.

Потенциальное транспортное средство оснащают одинаковыми потенциальными шинами.

Определяющие эффективность параметры рассчитывают по пункту 1.11.13 настоящего приложения.

1.11.2 Общее расстояние испытания

Общее расстояние, пройденное каждым транспортным средством в составе колонны, должно составлять 8000 ± 300 км. Любое пройденное расстояние, выходящее за эти пределы, влияет на действительность результатов испытания.

1.11.3 Транспортные средства в составе колонны и управление колонной

Колонна должна быть однородной по следующим параметрам транспортных средств:

- а) количество и расположение ведущих колес (см. пункт 1.6 настоящего приложения):
 - і) только переднеприводные ТС в составе колонны,
 - іі) только заднеприводные ТС в составе колонны,
 - только полноприводные (с постоянным полным приводом)ТС в составе колонны;
- b) устройства преобразования энергии в тягу (например, транспортные средства, работающие только от двигателя внутреннего сгорания (ДВС), только ГЭМ-БЗУ, только ГЭМ-ВЗУ или только ПЭМ) автомобилей в составе одной и той же колонны. Что касается гибридных транспортных средств, то применяют положения пункта 1.6.7 настоящего приложения.

В случае как эталонных, так и потенциальных шин используют одну и ту же модель транспортного средства и одинаковые параметры регулировки на нем при условии, что:

- с) потенциальная шина может быть установлена на ту же модель транспортного средства, что и эталонная шина;
- d) параметры нагрузки и регулировки допустимы для потенциальной шины.

Что касается максимальной дистанции между транспортными средствами в колонне, то каждый водитель должен иметь возможность держать идущие впереди и сзади транспортные средства в поле зрения.

Каждое транспортное средство должно двигаться по правой полосе (или по левой полосе для стран с левосторонним движением), когда она свободна.

1.11.4 Чередование транспортных средств в колонне и смена водителей

Каждая потенциальная шина, включая испытуемую и эталонную шины, должна пройти равные отрезки испытания:

- а) со всеми водителями;
- b) во всех очередностях следования автомобиля в составе колонны.

Смены водителей и чередование транспортных средств в колонне могут происходить в пределах допуска порядка 10 % от заданного расстояния на трассе.

- 1.11.5 Данные, замеряемые до, в ходе и после испытания
- 1.11.5.1 До и после испытания

До и после испытания проводят следующие измерения:

а) масса каждой шины;

- b) нагрузка на каждую шину;
- с) геометрия колес транспортного средства (в условиях нагрузки);
- d) давление в шине после монтажа и перед демонтажем.

1.11.5.2 В ходе испытания

В ходе испытания проводят и регистрируют следующие измерения:

- непрерывное измерение и регистрация параметров, необходимых для расчета продольного и бокового ускорений каждого транспортного средства;
- b) непрерывное измерение скорости каждого транспортного средства;
- с) измерение температуры (как указано в пункте 1.7.3 настоящего приложения);
- ежедневное измерение давления в шинах в холодном состоянии.
 Под холодным состоянием понимается, что со времени последней остановки прошло не менее 30 минут. Шина ни в коем случае должна быть подспущенной;
- е) измерение геометрии колес транспортного средства, причем в условиях нагрузки, с ее корректировкой до исходных значений, если это требуется для транспортного средства, используемого для установки эталонных шин. В ходе испытания измерение геометрии колес проводят 4 раза, т. е. по прохождении примерно каждой четверти испытательного расстояния.

На промежуточных остановках рекомендуется (но не является обязательным) измерение следующих параметров:

- f) массы шины в сборе с ободом;
- g) геометрии колес транспортного средства, причем в условиях нагрузки, с ее корректировкой до исходных значений, если это требуется для транспортного средства, используемого для установки потенциальных шин.
- 1.11.6 Обработка данных для расчета среднего значения температуры

Измерение температуры в ходе испытания:

измерение температуры производят в соответствии с пунктом 1.7.3.

1.11.7 Обработка данных для расчета стандартного отклонения продольного и бокового ускорений в ходе испытания

В течение каждой смены проводят непрерывную оценку скорости, а также бокового и продольного ускорений с рекомендуемой частотой дискретизации не менее 10 Гц. Наиболее распространенной технологией измерения является ГНСС (Глобальная навигационная спутниковая система) с числовой обработкой данных о местоположении.

Порядок обработки данных об ускорении приводится в добавлении 1 к настоящему приложению.

1.11.8 Валидация результатов испытания

Испытание считается зачетным при соблюдении следующих условий:

 по температуре: минимальные, максимальные и средние значения температуры, рассчитанные по пункту 1.11.6 настоящего приложения, соответствуют спецификациям, приведенным в пункте 1.7 настоящего приложения;

- b) по ускорению: боковое и продольное ускорения не превышают их максимальных значений и соответствуют значениям стандартного отклонения, рассчитанным по пункту 1.11.7 настоящего приложения, а также спецификациям, приведенным в пункте 1.6.13.3 настоящего приложения;
- с) при отсутствии данных ГНСС относительно ускорения потенциальной шины за расстояние, превышающее 1500 км, испытание для этой потенциальной шины считается незачетным;
- при отсутствии данных ГНСС относительно ускорения эталонной шины за расстояние, превышающее 1500 км, все испытание считается незачетным;
- е) геометрия колес транспортного средства в начале и в конце испытания соответствует спецификациям, приведенным в пункте 1.6 настоящего приложения;
- f) по потенциальным шинам, предназначенным для использования в тяжелых снежных условиях: уровень абразивного износа СЭИШ17W, приведенный к 10 °C (ALRT₁₀), находится в диапазоне, определенном в пункте 1.6.16 настоящего приложения;
- g) по другим потенциальным шинам: уровень абразивного износа СЭИШ17S, приведенный к 20 °С (ALRT₂₀), находится в диапазоне, определенном в пункте 1.6.16 настоящего приложения;
- h) при визуальном осмотре эталонных шин не выявлено никаких повреждений. Маркировка на боковине шины должна оставаться читаемой. Если эталонная шина потеряла более 1 см² протектора в результате выкрошивания резины, то шина считается разрушенной и подлежит утилизации, как предусмотрено в пункте 1.11.11 настоящего приложения.

1.11.9 Отклонение от номинальной трассы

Трасса считается зачетной при соблюдении всех следующих условий:

- изменения касаются участков общей протяженностью не более 10 км, если речь идет о полном испытании, либо участков протяженностью 10–30 км и затрагивают не более 8 смен;
- b) общий пробег составляет 8000 ± 300 км;
- с) уровень абразивного износа эталонной шины при 20 °С находится в диапазоне, указанном в пункте 1.6.16 настоящего приложения;
- d) предельные значения ускорения не выходят за рамки допусков, указанных в пунктах 1.6.13.2 и 1.6.13.3 настоящего приложения.

При соблюдении всех условий трасса считается зачетной, и расстояние, учитываемое при расчете, корректируется соответствующим образом.

Допустимо(ы) случайное(ые) отклонение(я), если на него (них) приходится расстояние, составляющее менее 20 % трассы или менее $100~\rm km$ (в зависимости от того, что меньше), при условии, что уровень абразивного износа эталонной шины при $20~\rm ^{\circ}C$ не превышает разрешенных пределов и соблюдены значения стандартного отклонения ускорения.

Во всех остальных случаях испытание считается незачетным, и трасса подлежит повторной валидации.

1.11.10 Порядок действий в случае неисправности транспортного средства

В случае повреждения одного из транспортных средств в составе колонны применяются следующие положения:

- а) если одно из транспортных средств в колонне повреждено и стало непригодным к эксплуатации (например, вследствие серьезного механического отказа или аварии), то его заменяют идентичным транспортным средством при идентичных же условиях нагрузки и параметрах регулировки. Подменное транспортное средство, оснащенное такими же шинами, которые были установлены в начале испытания, должно проехать расстояние на соответствующем участке трассы, потерянное из-за поломки автомобиля, без остальных транспортных средств колонны;
- b) если одно из транспортных средств в колонне сломалось и может быть отремонтировано, то расстояние, потерянное на соответствующем участке испытательной трассы, должно быть пройдено без остальных транспортных средств колонны;
- с) если поломка произошла на потенциальном, а не контрольном транспортном средстве, то испытание колонны может продолжаться, однако неисправное транспортное средство/ поврежденную шину изымают из ее состава. После этого для проведения нового испытания с самого начала надлежит использовать новый комплект потенциальных шин.

1.11.11 Порядок действий в случае повреждения шины

В случае повреждения шины одного из транспортных средств в составе колонны применяются следующие положения:

- а) если используемая в ходе испытания шина, установленная на контрольном транспортном средстве или на одном из потенциальных транспортных средств, повреждена в результате прокола, который можно устранить, причем ремонт позволяет продолжать движение без потери давления воздуха в шине, то добавленную после ремонта массу шины регистрируют и учитывают в окончательном расчете. Разрешается использование запасной шины при условии, что длина соответствующего кольцевого маршрута не превышает 7,5 % расстояния, которое должно быть пройдено в ходе испытания. Пробег на запасной шине регистрируют и учитывают для целей расчета уровня абразивного износа;
- b) если используемая в ходе испытания шина разрушена (или повреждена в результате прокола, не подлежащего ремонту, либо не держит давление), то для целей окончательного расчета величина, соответствующая потере массы второй испытательной шины на той же оси, удваивается. Запасная шина, используемая вместо разрушенной шины, должна иметь тот же размер и тот же рисунок протектора, что и замененная шина.

1.11.12 Порядок действий в случае неисправности ГНСС

Если данные о скорости и ускорении одного транспортного средства за одну смену не были зарегистрированы на участке, составляющем более 5 % трассы (из-за отсутствия спутникового сигнала или отказа устройства), то недостающие данные заменяют данными, полученными — при условии их достоверности — на одном из других транспортных средств (предпочтительно контрольном) в составе той же колонны за ту же смену.

1.11.13 Обработка данных для расчета уровня абразивного износа

1.11.13.1 Уровень абразивного износа эталонной шины при среднем значении температуры в ходе испытания (мг/км/т)

Средний уровень абразивного износа эталонной шины при среднем значении температуры в ходе испытания рассчитывается следующим образом:

$$ALRT = \frac{1000*\sum_{i=1}^{n} (MRTS_i - MRTF_i)/D_{Ri}}{\sum_{i=1}^{n} Q_{Ri}/1000},$$

где:

ALRT уровень абразивного износа эталонной шины при среднем значении температуры в ходе испытания, в мг/км/т;

 $MRTS_i$ масса эталонной шины в начале испытания, в г;

 $MRTF_{i}$ масса эталонной шины в конце испытания, в г;

 D_{Ri} общее расстояние, пройденное контрольным транспортным средством, в км;

 Q_{Ri} испытательная нагрузка на эталонную шину, в кг;

N количество шин.

1.11.13.2 Расчет уровня абразивного износа СЭИШ17S при 20 °C

Производят корректировку уровня абразивного износа обычной эталонной шины на температуру по пункту 1.6.16.1 настоящего приложения с использованием следующего уравнения:

$$ALTT_{20} = ALRT + S_S \cdot (20 - \bar{T}),$$

где \overline{T} — среднее значение температуры в ходе испытания.

1.11.13.3 Расчет уровня абразивного износа СЭИШ17W при 10 °C

Производят корректировку уровня абразивного износа зимней эталонной шины на температуру по пункту 1.6.16.1 настоящего приложения с использованием следующего уравнения:

$$ALTT_{10} = ALRT + S_W \cdot (10 - \overline{T}),$$

где \overline{T} — среднее значение температуры в ходе испытания.

1.11.13.4 Уровень абразивного износа потенциальной шины при среднем значении температуры в ходе испытания (мг/км/т)

Средний уровень абразивного износа потенциальной шины при среднем значении температуры в ходе испытания рассчитывают следующим образом:

$$ALCT = \frac{1000*\sum_{i=1}^{n} (MCTS_{i} - MCTF_{i})/D_{Ci}}{\sum_{i=1}^{n} Q_{Ci}/1000},$$

гле:

ALCT уровень абразивного износа потенциальной шины при среднем значении температуры в ходе испытания, в мг/км/т;

 $MCTS_i$ масса потенциальной шины в начале испытания, в г;

 $MCTF_i$ масса потенциальной шины в конце испытания, в г;

 D_{Ci} общее расстояние, пройденное потенциальным транспортным средством, в км;

 Q_{Ci} испытательная нагрузка на потенциальную шину, в кг;

n количество шин.

1.11.13.5 Индекс абразивного износа потенциальной шины не зависит от среднего значения температуры в ходе испытания и рассчитывается по следующему уравнению:

$$AICT = \frac{ALCT}{ALRT}$$

где:

AICT индекс абразивного износа потенциальной шины;

ALCT уровень абразивного износа потенциальной шины при среднем значении температуры в ходе испытания, в мг/км/т;

ALRT уровень абразивного износа эталонной шины при среднем значении температуры в ходе испытания, в мг/км/т.

- 1.12 Протокол испытания
- 1.12.1 Протокол испытания должен содержать следующую информацию:
 - а) среднее, минимальное и максимальное значения температуры в ходе испытания;
 - b) процентная доля расстояния, пройденного по мокрой дороге;
 - справочная информация о трассе, используемой для испытания, включая ее протяженность, местоположение и распределение стилей вождения;
 - d) общее расстояние отклонения от номинального расстояния, в км;
 - е) дата начала и окончания испытания.
- 1.12.2 Для каждой эталонной шины указывается следующая информация:
 - а) модель транспортного средства, используемого для установки эталонной шины;
 - b) данные о шине, включая изготовителя, товарный знак, торговое наименование, размер, индекс нагрузки и несущую способность, обозначение категории скорости, контрольное давление и серийный номер;
 - с) регулировка на транспортном средстве в начале испытания (углы схождения и развала колес на передней оси, углы схождения и развала колес на задней оси) в условиях нагрузки;
 - формация в транспортном средстве при каждом промежуточном измерении в ходе испытания (угол схождения и развала колес передней оси, угол схождения и развала колес задней оси) в условиях нагрузки;
 - е) регулировка на транспортном средстве по завершении испытания (угол схождения и развала колес передней оси, угол схождения и развала колес задней оси) в условиях нагрузки;
 - f) ширина обода (7,5 дюйма);
 - g) значение давления в холодной шине при установке;
 - h) значение давления в холодной шине по прохождении 50 % испытания;
 - і) значение давления в холодной шине в конце испытания;
 - ј) масса балансировочных грузиков в начале испытания;
 - к) масса балансировочных грузиков в конце испытания;
 - 1) первоначальная масса (MRTSi) каждой эталонной шины;

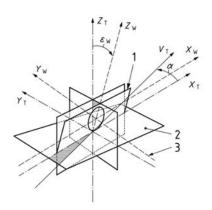
- m) конечная масса (MRTFi) каждой эталонной шины;
- n) уровень абразивного износа в мг/км/т, приведенный к 20 °C;
- о) расстояние, пройденное каждой эталонной шиной;
- р) стандартное отклонение продольного ускорения для транспортного средства, оснащенного эталонными шинами;
- q) стандартное отклонение бокового ускорения для транспортного средства, оснащенного эталонными шинами;
- процентная доля расстояния, пройденного при максимальном значении продольного ускорения, для транспортного средства, оснащенного эталонными шинами;
- s) процентная доля расстояния, пройденного при максимальном значении бокового ускорения, для транспортного средства, оснащенного эталонными шинами;
- t) процентная доля времени, приходящаяся на прогон в каждом диапазоне скорости (т. е. при городском стиле вождения, стиле вождения, характерном для региональных дорог, и шоссейном стиле вождения);
- u) измеренная нагрузка на каждую эталонную шину;
- v) протокол визуального осмотра эталонных шин;
- w) протокол визуального осмотра эталонных шин.
- 1.12.3 Для каждой потенциальной шины указывается следующая информация:
 - а) модель транспортного средства, используемого для установки потенциальной шины;
 - b) данные о шине, включая изготовителя, товарный знак, торговое наименование, размер, индекс нагрузки и несущую способность, обозначение категории скорости, контрольное давление и серийный номер;
 - с) регулировка на транспортном средстве в начале испытания (углы схождения и развала колес на передней оси, углы схождения и развала колес на задней оси) в условиях нагрузки;
 - d) регулировка на транспортном средстве по завершении испытания (угол схождения и развала колес передней оси, угол схождения и развала колес задней оси) в условиях нагрузки;
 - е) ширина обода;
 - f) значение давления в холодной шине при установке;
 - значение давления в холодной шине по прохождении 50 % испытания;
 - h) значение давления в холодной шине в конце испытания;
 - і) масса балансировочных грузиков в начале испытания;
 - ј) масса балансировочных грузиков в конце испытания;
 - k) первоначальная масса (MCTSi) каждой потенциальной шины;
 - 1) конечная масса (МСТГі) каждой потенциальной шины;
 - m) измеренная нагрузка на каждую потенциальную шину;
 - n) расстояние, пройденное каждой потенциальной шиной;
 - о) стандартное отклонение продольного ускорения для транспортного средства, оснащенного потенциальными шинами;

- р) стандартное отклонение бокового ускорения для транспортного средства, оснащенного потенциальными шинами;
- q) процентная доля расстояния, пройденного при максимальном значении продольного ускорения, для транспортного средства, оснащенного потенциальными шинами;
- r) процентная доля расстояния, пройденного при максимальном значении бокового ускорения, для транспортного средства, оснащенного потенциальными шинами;
- s) процентная доля времени, приходящаяся на прогон в каждом диапазоне скорости (т. е. при городском стиле вождения, стиле вождения, характерном для региональных дорог, и шоссейном стиле вождения);
- t) процентная доля времени, приходящаяся на прогон в каждом диапазоне скорости (т. е. при городском стиле вождения, стиле вождения, характерном для региональных дорог, и шоссейном стиле вождения).

1.12.4 Окончательные результаты испытания:

- а) результат измерения уровня абразивного износа (ALRT) эталонной шины в ходе испытания при среднем значении температуры во время испытания согласно пункту 1.11 настоящего приложения;
- b) результат измерения уровня абразивного износа (ALCT) потенциальной шины в ходе испытания при среднем значении температуры во время испытания согласно пункту 1.11 настоящего приложения;
- с) окончательный результат расчета индекса абразивного износа шины (AICT) согласно пункту 11 настоящего приложения.
- 2. Метод испытания b) на барабане в помещении
- 2.1 Область применения
- 2.1.1 Этот метод применяется к шинам класса С1, подпадающим под действие настоящих Правил, за исключением ледовых шин и шин с кодом номинального диаметра обода ≤13.
- 2.2 Определения и термины
 - В дополнение к соответствующим определениям, приведенным в пункте 2 настоящих Правил, в отношении метода испытания на барабане в помещении применяются нижеследующие определения.
- 2.2.1 "Абразивный износ шины" означает износ шины, который проявляется в виде потери массы шины в процессе эксплуатации.
- 2.2.2 "Потеря массы" означает количество массы, потерянной в результате абразивного износа шины. Примечание 1: выражается в граммах.
- 2.2.3 "*Испытательная шина*" означает потенциальную либо эталонную шину, которая используется для программы оценки.
- 2.2.3.1 Потенциальная шина
 - Т испытательная шина, которая является частью программы оценки и оценивается вместе с эталонной шиной при использовании одинакового метода испытания.

2.2.3.2 Эталонная шина


R специальная испытательная шина, которая используется в качестве эталона в программе оценки.

- 2.2.3.2.1 "Стандартная эталонная испытательная шина" или "СЭИШ" означает шину, которая изготавливается, проверяется и хранится в соответствии со стандартами "АСТМ интернэшнл":
 - а) F3676 23 для размера 225/45R17 и которую называют "СЭИШ17S";
 - b) F3675 23 для размера 225/45R17 и которую называют "СЭИШ17W".

Обычная эталонная шина (225/45R17 94 XL ASTM F3676 — 23) служит для испытания потенциальных шин, не предназначенных для использования в тяжелых снежных условиях, и означает обычные шины, зимние шины и шины специального назначения, не имеющие маркировку M+S или 3PMSF.

Зимняя эталонная шина (225/45R17 94 XL ASTM F3675 — 23) служит для испытания потенциальных шин, предназначенных для использования в тяжелых снежных условиях (имеют маркировку 3PMSF), а также шин специального назначения, имеющих маркировку M+S или 3PMSF.

- 2.2.4 "Средняя глубина профиля" это характеристика шероховатости поверхности в макромасштабе, описание которой дается в стандарте ISO 13473-1.
- 2.2.5 "Микрошероховатость" означает шероховатость поверхности в микромасштабе, измеряемую при иных условиях фильтрации, как это предусмотрено стандартом ISO 13473-1.
- 2.2.6 "*Система координат шин*" это система координат шин, указанная в стандарте ISO 8855.

- 2.2.7 "Вертикальная нагрузка" означает контактное давление шины на дорогу в результате воздействия массы, поддерживаемой шиной. Контактное давление шины указано в стандарте ISO 8855.
- 2.2.8 "Боковая сила" означает силу, создаваемую шиной в боковом направлении при прохождении поворота. Боковая сила шины указана в стандарте ISO 8855. Она имеет положительный знак при повороте налево и отрицательный при повороте направо.
- 2.2.9 "Продольная сила" означает силу, создаваемую шиной в продольном направлении при ускорении или торможении. Продольная сила шины указана в стандарте ISO 8855. Она имеет положительный знак при увеличении скорости и отрицательный при снижении скорости (например, при торможении).
- 2.2.10 "Радиус шины под нагрузкой" означает расстояние от оси шины до наружной поверхности барабана в установившемся режиме при нулевом значении скорости и угле развала, равном 0° , причем испытательная

нагрузка и требуемое давление в шине обеспечиваются при комнатной температуре согласно условиям термостатирования по пункту 2.5.2.

- 2.2.11 "*Крутящий момент шины*" означает крутящий момент на оси вращения шины.
- 2.2.12 "Индекс нагрузки" это числовой код, обозначающий максимальную нагрузку, которую может выдержать шина при скоростях, соответствующих ее категории скорости в условиях эксплуатации, указанных изготовителем шины.
- 2.3 Условные обозначения и сокращенные термины

В дополнение к соответствующим условным обозначениям и сокращенным терминам, приведенным в пункте 1 приложения 10 к настоящим Правилам, в отношении метода испытания на барабане в помещении применяются нижеследующие условные обозначения и сокращенные термины.

Условное обозначение	Единица измерения	Наименование
Т	Безразмерная величина	Потенциальная шина
R	Безразмерная величина	Эталонная шина
Fz	Н	Вертикальная нагрузка
Fy	Н	Боковая сила
Fx	Н	Продольная сила
$r_{\rm L}$	M	Радиус шины под нагрузкой
My	Нм	Крутящий момент шины
ИН	Безразмерная величина	Индекс нагрузки
СГП	MM	Средняя глубина профиля

2.4 Метод испытания

2.4.1 Общие положения

Данный метод испытания позволяет оценить потерю массы потенциальной шины по сравнению с эталонной шиной.

При измерении степени износа протектора шины в зависимости от пройденного расстояния необходимо регулировать нормальную нагрузку, а также боковую и продольную силы, прилагаемые к испытуемой шине.

При данном методе испытания используется оборудование для испытания протектора на износ с цилиндрическим маховиком (барабаном), имеющим наружную поверхность.

2.4.2 Технические требования к барабану

2.4.2.1 Оборудование для испытания шин на износ

Оборудование для испытания шин на износ состоит из барабана, устройства для перемещения шин, устройства нагружения и системы предотвращения прилипания. Устройств для перемещения шин может быть одно или два.

2.4.2.2 Диаметр барабана

Испытательный динамометр должен иметь цилиндрический маховик (барабан) диаметром не менее 3 м.

2.4.2.3 Испытательная поверхность

На внешнюю поверхность цилиндрического барабана наносят испытательную поверхность, которая должна отвечать следующим минимальным требованиям:

- а) иметь СГП, измеряемую в начале и в конце испытания на барабане, не превышающую 2,0 мм, согласно стандарту ISO 13473-1;
- b) иметь микрошероховатость, измеряемую в начале и в конце испытания на барабане, в диапазоне 0,07−0,4 мм. Для измерения микрошероховатости используют метод измерения СГП, описанный в стандарте ISO 13473-1; исключения касаются шага дискретизации, повторной дискретизации, фильтрации верхних и нижних частот и длины сегмента. Шаг дискретизации не превышает 0,033 мм, и замеры производят с фиксированным шагом в горизонтальном направлении. Шаг повторной дискретизации сигнала составляет 0,017 мм (предпочтительно) либо 0,033 мм. Для фильтрации верхних и нижних частот используют фильтр Баттерворта второго порядка с частотой среза 3,0 мм, которой соответствует длина волны текстуры, равная 0,1 мм. Длина сегмента составляет 3,33 ± 0,33 мм;
- с) быть текстурирована песком, гравием или другим альтернативным материалом, например смолой с электрокорундовым зерном;
- d) поверхность барабана должна быть изготовлена из жесткого и не деформируемого материала;
- е) испытательная поверхность, включая пустоты, должна быть сухой и чистой на протяжении всей процедуры измерения и при проведении всех измерений;
- f) прибор для измерения СГП должен соответствовать требованиям стандарта ISO 13473-3. Прибор для измерения микрошероховатости также должен соответствовать требованиям стандарта ISO 13473-3, за исключением разрешения по горизонтали, которое не должно превышать 0,033 мм.

Уровень абразивного износа эталонной шины СЭИШ17S на поверхностях всех типов должен находиться в диапазоне 50–190 мг/км/т.

Уровень абразивного износа эталонной шины СЭИШ17W на поверхностях всех типов должен находиться в диапазоне 35–165 мг/км/т. Уровень абразивного износа рассчитывают в соответствии с методом, изложенным в пункте 2.8 настоящего приложения. Если в качестве поверхности используется шлифовальная бумага, то ее замену производят так, как указано в добавлении 5.

Если поверхность барабана более не удовлетворяет указанным выше условиям, ее заменяют. Рекомендуется проводить промежуточную проверку степени абразивного износа эталонной шины.

2.4.2.4 Ширина

Ширина испытательной поверхности всегда должна превышать ширину пятна контакта испытуемой шины на протяжении всего испытания.

2.4.3 Система перемещения и привода шин

Система перемещения и привода шин должна обеспечивать динамическое управление:

- боковой силой шины, которая возникает за счет силы сопротивления, создаваемой углом бокового увода шины во время лвижения:
- b) продольной силой шины или крутящим моментом, которая(ый) возникает за счет тягового усилия шины при торможении и ускорении.

Максимальное допустимое отклонение от номинального значения нагрузки (Fz), боковой силы (Fy), продольной силы (Fx) и крутящего момента шины (Му) в ходе испытаний составляет:

- c) Fz: \pm 50 H или 1 %, в зависимости от того, что больше;
- d) Fy: \pm 100 H или 5 %, в зависимости от того, что больше, для разницы между исходными и фактически полученными пиковыми значениями;
- e) Fx: \pm H или 5 %, в зависимости от того, что больше, для разницы между исходными и фактически полученными пиковыми значениями;
- f) My: \pm 40 H·м или 5 %, в зависимости от того, что больше, для разницы между исходными и фактически полученными пиковыми значениями.

2.4.4 Система предотвращения прилипания

2.4.4.1 Нанесение порошка

Оборудование для испытания протектора на износ должно быть оснащено системой нанесения порошка для распыления контролируемого объема талька либо кремнезема. Использование смеси талька с кремнеземом не допускается. Размер частиц порошка обычно составляет 0,1–100 мкм.

Система нанесения порошка обеспечивает его распыление на испытательную поверхность вблизи пятна контакта испытуемой шины с таким расчетом, чтобы продукты износа не прилипали к поверхности шины или испытательного барабана. Система нанесения порошка и используемые в ходе испытания материалы должны быть одинаковыми для эталонной и потенциальной шин и оставаться неизменными на протяжении всего испытания. Скорость (из расчета массы или объема), с которой порошок подается на эталонную и потенциальную шины, должна быть одинаковой, при максимальном отклонении в ходе каждого испытания не более $\pm 10~\%$.

2.4.4.2 Положение форсунки

Положение форсунки системы нанесения порошка должно соответствовать по крайней мере одному из указанных ниже технических требований:

а) нагнетательная форсунка: в случае использования только одной форсунки ее центр должен располагаться в плоскости симметрии. Расстояние от форсунки до центра пятна контакта должно составлять менее 35 см.

В случае использования нескольких форсунок их располагают параллельно оси Y и распределяют симметрично по отношению к оси X. Расстояние от форсунок до центра пятна контакта должно составлять менее 35 см. Форсунки должны быть направлены на точку входа шины в пятно контакта с поверхностью;

- b) дисперсионная форсунка: испытательное устройство накрывается кожухом, внутри которого порошок должен распыляться равномерно. Форсунку(и) располагают параллельно оси Y и распределяют симметрично по отношению к оси X.
- 2.4.5 Точность измерения нагрузки, настроек, регулировки и контрольно-измерительных приборов

В целях обеспечения требуемых данных испытаний измерение этих параметров должно быть достаточно точным и прецизионным. Соответствующие конкретные значения приведены в добавлении 4 к настоящему приложению.

2.4.6 Весы

Весы для измерения массы испытуемых шин должны:

- а) иметь предел взвешивания, подходящий для испытуемых шин;
- b) обеспечивать погрешность измерения массы в пределах ± 2 г.

Весы должны быть надлежащим образом откалиброваны с соблюдением требований изготовителя.

2.5 Условия проведения испытания

2.5.1 Общие положения

Суть испытания состоит в измерении потери массы шины, причем шина накачивается до требуемого значения давления в холодном состоянии, как указано в пункте 2.5.3 настоящего приложения, после чего внутреннее давление автоматически повышается («нарастание давления при закрытом клапане») без его принудительной регулировки.

2.5.2 Испытательная нагрузка

Стандартную испытательную нагрузку Fz на испытуемую шину рассчитывают по ее индексу допустимой нагрузки (максимальная масса, соответствующая ИН шины).

Стандартную испытательную нагрузку рассчитывают на основе значений, приведенных в таблице 1, и она должна находиться в пределах допусков, указанных в добавлении 4 к настоящему приложению.

2.5.3 Давление в шине

Давление в шине (при закрытом клапане) устанавливают согласно значениям, указанным в таблице 1, с точностью, указанной в добавлении 4 к настоящему приложению.

Таблица 1 Значения испытательной нагрузки и давления в шине

	CI^{a}				
Тип шины	Стандартная или неполная нагрузка	Усиленная или с повышенной несущей способностью			
Нагрузка — в % от максимальной несущей способности	80	80			
Давление в шине ^b (кПа)	210	250			

^а Для шин класса C1, относящихся к категориям, не указанным в приложении В к стандарту ISO 4000-1:2015, внутреннее давление устанавливается согласно рекомендациям изготовителя шин с учетом максимальной несущей способности шин, уменьшенной на 30 кПа. ^b Внутреннее давление должно находиться в пределах точности, указанных в добавлении 4.

2.5.4 Условия испытания (продольная сила, боковая сила, испытательная скорость, величина пробега)

Для признания испытания зачетным должны быть соблюдены следующие условия:

- а) продольная и боковая силы рассчитываются на основе значений, приведенных в добавлении 3 к настоящему приложению. Скорость должна соответствовать значениям, указанным в добавлении 4 к настоящему приложению;
- b) общая величина пробега составляет 5000 км. Общее расстояние фактического пробега при испытании не должно отличаться более чем на \pm 5 % от общей исходной величины;
- с) эталонную шину монтируют на ободе с кодом ширины 7,5. Новые потенциальные шины монтируют на любом ободе, требуемом и одобренном изготовителем шины;
- ширину обода потенциальной шины регистрируют. Шины, к установке которых предъявляются специальные требования, например шины с асимметричным или направленным рисунком протектора, устанавливают в соответствии с этими требованиями: должно соблюдаться направление вращения;
- е) испытание проводят при нулевом угле развала (0°) .

2.6 Процедура испытания

2.6.1 Общие положения

Описанные ниже этапы процедуры испытания выполняют в указанной последовательности:

- а) для испытания используют новые эталонные и потенциальные шины;
- b) испытательные шины с заданным направлением вращения должны катиться по направлению вперед;
- с) направление вращения остается неизменным на протяжении всего испытания;
- d) при расчете уровня абразивного износа используют фактическое расстояние испытательного прогона.

2.6.2 Термостатирование

Накачанную шину помещают в термальную среду места проведения испытания не менее чем на 3 часа.

2.6.3 Регулировка давления

После термостатирования давление в шине устанавливают на уровне испытательного давления.

2.6.4 Термальная среда

Во время испытания температуру окружающей среды поддерживают на уровне 25 ± 5 °C. Температуру окружающей среды измеряют на расстоянии не менее 0.15 м и не более 1 м от шины.

Средняя температура окружающей среды для эталонной и потенциальной шин в ходе испытания не должна отличаться более чем на $2\,^{\circ}\mathrm{C}$.

2.6.5 Измерение массы

Массу эталонных и потенциальных шин измеряют до и после пробега, равного 5000 км, как определено в пункте 2.6.6 настоящего приложения.

2.6.6 Цикл испытания

2.6.6.1 Исходные условия

Эталонную и потенциальную шины испытывают в соответствии с исходными условиями, оговоренными в добавлении 4 к настоящему приложению. Указанное в добавлении 4 расстояние 250 км составляет один цикл испытания, который повторяют 20 раз до набега 5000 км.

2.6.6.2 Программа испытания по умолчанию (барабан с 2 испытательными положениями)

Эталонную и потенциальную шины устанавливают в разных положениях на одном барабане. Испытание эталонной и потенциальной шин проводят одновременно.

Установленные в этих двух положениях шины заменяют один раз по прохождении 2500 км. Направление вращения должно быть постоянным на протяжении всего испытания.

После прохождении 2500 км рекомендуется провести визуальный осмотр шин с целью убедиться, что не произошло выкрошивание протектора.

2.6.6.3 Альтернативная программа испытания (барабан с 1 испытательным положением)

На случай, если одновременное испытание эталонной и потенциальной шин невозможно, допускается использование альтернативной программы испытания. Порядок проведения испытания эталонной (R) и потенциальной (T) шин является следующим:

R (1000 км) — T (2000 км) — R (2000 км) — T (2000 км) — R (2000 км) — T (1000 км).

Исходные условия, указанные в добавлении 3, воспроизводят 4 раза для расстояния 1000 км и 8 раз — для 2000 км.

По прохождении примерно 2500 км рекомендуется провести визуальный осмотр шин с целью убедиться, что не произошло выкрошивание протектора.

2.6.6.4 Начальный этап испытания

Шины входят в соприкосновение с барабаном на скорости, равной 0 км/ч. Затем на скорости, равной 0 км/ч, или на очень низкой скорости прикладывают испытательную нагрузку Fz, после чего скорость может быть увеличена до начальной скорости испытания 60 км/ч при максимальном значении продольного ускорения $0,125 \text{ м/c}^2$ или при максимальном расстоянии прогона 3,5 км. Начальный этап испытания проводят в условиях свободного качения. Расстояние, пройденное на начальном этапе, не учитывают.

2.6.7 Измерение и регистрация показаний

В таблице 2 приведены подлежащие измерению и регистрации параметры.

Таблица 2

Параметры, подлежащие измерению и регистрации в ходе испытания на барабане

Параметр	Требования
а) Испытательная скорость	Частота дискретизации ≥ 1 Гц
b) Контактное давление шины на поверхность барабана	Частота дискретизации ≥ 1 Гц

Параметр	Требования
с) Испытательное внутреннее давление: начальное значение и значение в конце испытания, как определено в пункте 2.6.3	Измеряется:
d) Температура окружающей среды, измеряемая в °C, t _{amb}	Частота дискретизации ≥ 1 Гц
е) Боковая сила, прилагаемая к испытуемой шине в ходе испытания	Частота дискретизации ≥ 10 Гц
f) Продольная сила или крутящий момент, прилагаемые к испытуемой шине в ходе испытания	Частота дискретизации $\geq 10~\Gamma$ ц
g) Масса шины	Измеряется:
h) СГП и микрошероховатость испытательной поверхности	Измеряются:
i) Фотографирование шин после выполнения программы испытания	После испытания шины фотографируют, чтобы зарегистрировать внешний вид поверхности в качестве доказательства завершения испытания надлежащим образом.

При измерении силы или крутящего момента, прилагаемого к испытуемой шине, для устранения первой и/или второй гармоники шины можно использовать скользящее среднее значение за один оборот колеса.

При измерении силы или крутящего момента, прилагаемого к испытуемой шине, для устранения первой и/или второй гармоники шины можно использовать фильтр нижних частот.

2.7 Валидация

После испытания методом, указанным в пункте 2.5 настоящего приложения, при отсутствии необратимой деформации испытательного обода и вентиля и потери давления на шине не должно наблюдаться отслоения протектора, расслоений в боковине, в каркасе, отслоений корда, герметичного слоя, расслоения в брекере или в борту, выкрошивания резины, открытых стыков, трещин, разорванных нитей корда или прилипания резины.

При визуальном осмотре эталонных шин не должно быть выявлено никаких повреждений. Если эталонная шина теряет в общей сложности более 1 см² поверхности протектора (в результате выкрошивания резины или другого механического процесса), то шина считается разрушенной, а испытание признают недействительным.

Следующие измеренные значения каждого параметра должны соответствовать допускам, указанным в таблице 3. В противном случае результаты испытания отклоняют.

Таблица 3 Валидация значений Fx, Fy, Fz

Параметр	Измерение	Значение, подлежащее проверке	Допуск
Fx	CK3 ^{a)} G(x)	$CK3_{Gx} = 0,059$	± 5 %
Fy	CK3 ^{a)} G(y)	$CK3_{Gy} = 0,074$	± 5 %
Fx и Fy	$CK3^{a)}G(x, y)$	$CK3_{Gxy} = 0.095$	± 5 %
Fz	Полученное с применением фильтра СКЗ Fz, деленное на номинальное значение Fz	Среднее значение Fz	\pm 50 Н или \pm 1 %, в зависимости от того, что больше

Примечание:

 $^{a)}$ Для всего испытания с общим расстоянием пробега 5 000 км среднеквадратичные значения (СКЗ) G(x) и G(y) рассчитывают с использованием приведенных ниже уравнений:

$$CK3_{Gx} = \sqrt{\frac{1}{N} \times \sum_{i=1}^{N} \left(\frac{Fx_i}{Fz_i}\right)^2}$$

$$CK3_{Gy} = \sqrt{\frac{1}{N} \times \sum_{i=1}^{N} \left(\frac{Fy_i}{Fz_i}\right)^2}$$

СКЗ_{Gxy} =
$$\sqrt{\frac{1}{N} \times \sum_{i=1}^{N} \frac{(Fx_i)^2 + (Fy_i)^2}{(среднее Fz)^2}}$$

где:

і — количество данных, полученных при частоте дискретизации 10 Гц;

N — общее количество полученных данных.

Допускается фильтрация значений Fx, Fy и My с помощью фильтра нижних частот для устранения помех на выходе.

Значения Fz фильтруют методом скользящего среднего за одну секунду.

2.8 Обработка результатов измерений

Ниже представлена методика расчета индекса абразивного износа и уровня абразивного износа с использованием следующих уравнений:

 $MlT = MT_b - MT_a$

 $MlR = MR_b - MR_a$

где:

MIT — потеря массы потенциальной шины, в граммах;

MIR — потеря массы эталонной шины, в граммах;

 MT_b — масса потенциальной шины до начала цикла испытания, в граммах;

 MT_a — масса потенциальной шины по окончании цикла испытания, в граммах;

 MR_b — масса эталонной шины до начала цикла испытания, в граммах;

 MR_a — масса эталонной шины по окончании цикла испытания, в граммах.

Индекс абразивного износа (AICT) рассчитывают по следующему уравнению:

AICT = ArT/ArR.

где:

ArT — нормализованная степень абразивного износа (мг/км/т) потенциальной шины

ArT = MIT (Γ)/DT (κ M)/Fz,T (τ) x 1000 (κ F/ κ F);

ArR — нормализованная степень абразивного износа (мг/км/т) эталонной шины

ArR = MlR (Γ)/DR (κ M)/Fz,R (τ) x 1000 (κ Γ / κ Γ);

DT — испытательный пробег потенциальной шины (км);

DR — испытательный пробег эталонной шины (км);

Fz,Т — испытательная нагрузка (т) на потенциальную шину;

Fz,R — испытательная нагрузка (т) на эталонную шину.

В качестве эталонной шины для расчета индекса абразивного износа используют одну из шин, указанных в пункте 2.2.3.2.1 настоящего приложения.

2.9 Протокол испытания

- 2.9.1 Протокол испытания должен содержать следующую информацию:
 - а) идентификационное обозначение испытательной машины;
 - b) длина окружности барабана (м);
 - с) цикл испытания (2 положения/1 положение);
 - d) рабочий слой (тальк/кремнезем);
 - е) СГП испытательной поверхности (мм): в начале испытания/ в конце испытания;
 - f) класс шины;
 - g) марка;
 - h) рисунок/торговое описание;
 - і) обозначение размеров шины;
 - ј) эксплуатационное описание;
 - k) испытательная нагрузка (H);
 - 1) испытательное давление в шине (кПа);
 - m) идентификационный номер шины;
 - n) маркировка 3PMSF (имеется/отсутствует);
 - о) ширина обода (дюймы);
 - р) внутреннее давление в шине (кПа): в начале испытания/в конце испытания;
 - q) масса шины (г): до испытания/после испытания;
 - r) испытательное расстояние (км);
 - s) степень абразивного износа (мг/км);
 - t) уровень абразивного износа (мг/км/т);
 - u) индекс абразивного износа (только для потенциальных шин);
 - v) средняя температура окружающей среды (°С);
 - w) среднеквадратичное значение G(x);
 - х) среднеквадратичное значение G(y);
 - у) среднее значение Fz.

Приложение 10 — Добавление 1

Расчет ускорений

- 1. Исходные данные для расчета
- 1.1 Необходимые параметры

Для расчета продольного и бокового ускорений необходимы следующие параметры:

- а) скорость транспортного средства (v), [м/с];
- b) продольное ускорение ($a_{longitudinal}$), [M/c^2];
- с) боковое ускорение $(a_{lateral}), [m/c^2].$

Значения ускорений получают путем оценки сигналов ГНСС (Глобальная навигационная спутниковая система, определенная в стандарте ISO 24245:2023). Рекомендуемая частота дискретизации — не менее 10 Гц. В противном случае описанный ниже процесс фильтрации неприменим.

Фильтрация измеренных значений

1.2 Обнаружение и коррекция скачков скорости

Перед началом процесса фильтрации все измеренные значения проверяют на предмет скачков скорости. Скачки скорости относятся к измерениям, которые не являются допустимыми. Для выявления скачков скорости значения скорости фильтруют по Баттерворту с частотой среза фильтра 1 Гц. Для максимального продольного ускорения установлена пороговая величина, составляющая 9 м/с². Это означает, что изменение скорости максимум на 9 м/с² \cdot t_{sampling} (где "sampling" означает "дискретизация") все еще является допустимым.

Скачок скорости обнаруживается при разнице скорости $2 \cdot \Delta speed_{possible}$ (двукратное возможное изменение скорости). В случае обнаружения скачка скорости соответствующие исходные значения скорости заменяют линейным интерполированным значением.

1.3 Фильтр Баттерворта

Для фильтрации измерений используется фильтр Баттерворта второго порядка с частотой среза 1 Гц. После такой фильтрации значения сглаживаются методом скользящего среднего за 1 секунду для продольного ускорения, а для всех остальных значений — за 2 секунды.

Все значения ускорения, измеренные для скорости менее 7 км/ч, исключаются.

Код на «Python»:

from scipy.signal import butter, filtfilt

Filter settings: n_order is the order of the filter,

A scalar or length-2 sequence giving the critical frequencies

N-2

 $Wn = 1 / (0.5 * round(data_inp['freq_sample'].mean()))$

[b,a] = butter(N, Wn, 'lowpass')

data_filt = filtfilt(b, a, data_inp, padtype = 'odd')

data_inp = data_inp[(data_inp.speed_filt > speed_min)]

1.4 Скользящее среднее значение

Код на «Python»:

averaging over 1 second window

make sure window is odd

if round(data_inp['freq_sample'].mean()) % 2 != 0:

win = int(round(data_inp['freq_sample'].mean()))

else:

win = int(round(data_inp['freq_sample'].mean()) - 1)

data_inp['accx_filt_movg'] = data_inp['accx_filt'].rolling(window=win,,
center=True, min_periods=1).mean()

averaging over 2 second window

win = int(round(data_inp['freq_sample'].mean()) * 2 - 1)

 $data_inp['accy_filt_movg'] = data_inp['accy_filt'].rolling(window=win, accy_filt').rolling(window=win, accy_filt').rolling(w$

center=True, min_periods=1).mean()

data_inp['speed_filt_movg'] = data_inp['speed_filt'].rolling(window=win,

center=True, min_periods=1).mean()

1.5 Стандартное отклонение с привязкой к расстоянию

Рассчитанные значения ускорения (при постоянной частоте дискретизации) передаются с привязкой к расстоянию: одно значение на метр. Для этого используется простая интерполяция. На основе этих значений ускорения стандартное отклонение можно рассчитать по следующим известным формулам:

$$S_{longitudinal} = \sqrt{\frac{1}{N-1} \cdot \sum_{i=1}^{N} (a_{longitudinal,i} - \mu_{longitudinal})^{2}}$$

при $\mu_{longitudinal} = \frac{1}{N} \sum_{i=1}^{N} a_{longitudinal,i}$

$$S_{lateral} = \sqrt{\frac{1}{N-1} \cdot \sum_{i=1}^{N} (a_{lateral,i} - \mu_{lateral})^2}$$

при $\mu_{lateral} = \frac{1}{N} \sum_{i=1}^{N} a_{lateral,i}$

Код на «Python»:

from scipy import interpolate

import numpy as np

 $data_inp['distance'] = data_inp['speed']/data_inp['fsample']$

data_inp['distance'] = data_inp['distance'].cumsum()

interpolate function for acc

f_accx = interpolate.interp1d(data_inp['distance'], data_inp['accx'])

 $f_accy = interpolate.interp1d(data_inp['distance'], \ data_inp['accy'])$

generate array of distance every 1m

distance_1m = np.array(data_inp['distance'].iloc[0], data_inp['distance'].iloc[-1], 1)

create an interpolation every 1m for the accelarations - numpy array result

len of the array same as len of distance_1m

 $accx_DB = f_accx(distance_1m)$

 $accy_DB = f_accy(distance_1m)$

compute the stadx with ceiling accx_DB and accy_DB stdax = np.std(accx_DB) stday = np.std(accy_DB)

2. Распределение стилей вождения — порядок расчета

Распределение стилей вождения рассчитывают в следующем порядке:

- а) накопить данные об ускорении транспортного средства применительно к расстоянию пробега по трассе, составляющему 8000 км. Можно использовать данные об ускорениях, полученные при проверке трассы на абразивность. Предписания пункта 1.6.13.2 d) настоящего приложения, касающиеся скорости транспортного средства, должны соблюдаться при каждом отдельном испытании колонны;
- b) произвести разбивку данных по 20-километровым участкам;
- с) по каждому участку рассчитать стандартные отклонения продольного и бокового ускорений ($S_{longitudinal}$; $S_{lateral}$) в соответствии с методом, описанным в пункте 1 настоящего добавления;
- d) применительно к каждому участку, для которого получены необходимые данные (S_{longitudinal}; S_{lateral}), определить, какому стилю вождения (согласно пункту 1.6.13.2) он соответствует. Считается, что для участка характерен городской либо шоссейный стиль вождения, если он отвечает соответствующим критериям, или же стиль вождения по региональным дорогам, если городской или шоссейный стиль вождения к нему не применим;
- е) доля баллов за один стиль вождения равняется количеству баллов за этот стиль вождения, деленному на общее количество участков. Эта доля должна соответствовать долям, определенным в пункте 1.6.13.2.

Приложение 10 — Добавление 2

Пример протокола испытания для метода с использованием транспортного средства

	Прото	окол испыта	ния на стег	пень абрази	івного изно	са шин			
Условия испытания									
Дата начала испытания			Дата око	нчания исп	іытания				
Температура в ходе испытания	(в °C):		•			•			
Средняя		Мин	имальная			Макс	симальная		
Процентная доля расстояния, п по мокрой дороге:	ройден	НОГО			(добавит	ь пробег п	о снегу)		
Трасса, используемая для испытания:									
Справочная информация:			Местопо	ложение					
Номинальная протяженность трассы			Общее п	ройденное	расстояние				
Расстояние пробега при шоссейном стиле вождения:		Расстояние пробега при стиле вождения, характерном для региональных дорог:							
Расстояние пробега при городском стиле вождения:			Общее р	асстояние (отклонения				
Наклон линии регрессии для эт	алонної	й шины в за	висимости	от темпера	туры:				
		Потенци	альная шин	на/потенциа	альное ТС	Этало	нная шина	/контроль	ное ТС
		Спереди слева	Спереди справа	Сзади слева	Сзади справа	Сперед и слева	Спереди справа	Сзади слева	Сзади справа
Информация о транспортном средстве									
Модель транспортного средств	a								
Стандартное отклонение ускорег	ния Х								
% расстояния, пройденного с максимальным продольным ускорением									
Стандартное отклонение ускорен	ния Ү								
% расстояния, пройденного с максимальным боковым уско	рением								
Угол схождения в начале испы	тания								
Угол развала в начале испытан	ия								
Угол схождения в конце испыт	ания								
Угол развала в конце испытани	R								
Нагрузка в каждом положении									

E/ECE/324/Rev.2/Add.116/Rev.6/Amend.2 E/ECE/TRANS/505/Rev.2/Add.116/Rev.6/Amend

Информация о шине							
Марка шины							
Рисунок протектора шины							
Обозначение размеров шины							
Индекс нагрузки шины							
Индекс скорости шины							
Серийный номер (если имеется)							
Значение давления в холодной шине (при установке)							
Значение давления в холодной шине (по прохождении 50 % испытания)							
Значение давления в холодной шине (в конце испытания)							
Масса балансировочных грузиков (в начале испытания)							
Масса балансировочных грузиков (в конце испытания)							
Ширина обода				7,5 дюйма	7,5 дюйма	7,5 дюйма	7,5 дюйма
Первоначальная масса шины							
Конечная масса шины							
Расстояние, пройденное каждой шиной							
Уровень абразивного износа эталонной к 20 °C (или 10 °C)	шины (в м	т/км/т), при	веденный				
Протокол визуального осмотра шин							
Результаты испытания							
Уровень абразивного износа шины (в мг/км/т)							
Индекс абразивного износа шины					H/	П	

Приложение 10 — Добавление 3

Исходные значения для цикла испытания

Для расчета действующих сил Fx и Fy вводятся, как показано ниже, индексы продольного и бокового ускорений (G(x) и G(y) соответственно).

Применительно к испытательной установке с управлением крутящим моментом крутящий момент шины (Му) рассчитывается с учетом величины продольной силы (Fx) и радиуса шины под нагрузкой (R_L) по приведенным ниже уравнениям:

 $Fx = Fz \times G(x)$ или My = испытательная нагрузка $(Fz) \times G(x) \times R_L$

 $Fy = Fz \times G(y)$

Fz — испытательная нагрузка, определенная в пунктах 2.2.8 и 2.5.2.

G(x) и G(y) представляют собой индексы в привязке к стандартному ускорению, обусловленному силой земного притяжения ($g=9,80665 \text{ м/c}^2$). В качестве альтернативы можно определить местное значение силы тяжести.

В таблице A1 указаны параметры испытательного цикла, а именно время, G(x), G(y) и скорость, причем T — это продолжительность испытания с момента его начала. В любой конкретный момент времени по ходу всего испытания (T) значения G(x) и G(y) должны равняться значениям, указанным в таблице A1.

Изменение значений G(x) и G(y) между двумя смежными точками должно происходить линейно. Поэтому значения Fx и Fy также будут изменяться линейно от одной точки к другой. На нижеследующих диаграммах представлены примеры линейного изменения Fx или Fy в зависимости от T.

Т означает время движения с момента начала испытания.

Значения G(x) и G(y) в момент времени движения T приведены в таблице A1.

Значения G(x) и G(y) изменяются линейно между двумя точками.

Диаграмма А.1 Пример Fx при испытательной нагрузке, равной 5727 Н

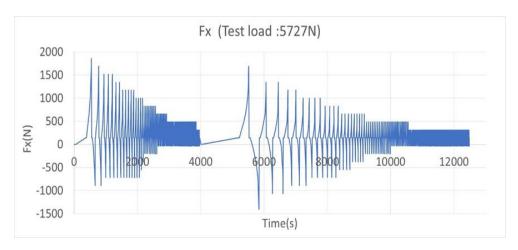


Диаграмма А.2 **Пример Fy при испытательной нагрузке, равной 5727 H**

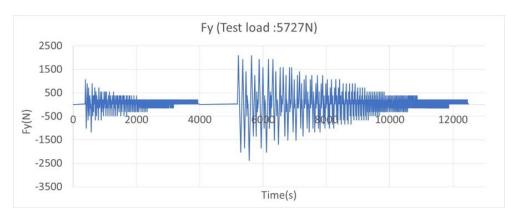


Таблица A1 Исходные значения для цикла испытания

T	v	C(n)	<i>C</i> ()
(c)	(км/ч)	G(x)	G(y)
0	60	0,000	0
50	100	0,000	0,000
373,2	100	0,025	0,005
388,4	100	0,025	0,185
418,7	100	0,055	-0,175
446,5	100	0,085	0,155
471,7	100	0,115	-0,115
491,9	100	0,145	0,125
509,6	100	0,175	-0,085
522,3	100	0,205	0,065
532,4	100	0,235	-0,025
540,0	100	0,265	0,035
545,0	100	0,295	0,005
547,5	100	0,325	0,005
556,8	100	0,025	0,005
574,5	100	0,025	-0,205
602,3	100	-0,005	0,155
620,0	100	-0,035	-0,085
632,6	100	-0,065	0,065
645,2	100	-0,095	-0,055
657,9	100	-0,125	0,065
662,9	100	-0,155	0,005
668,8	100	0,025	0,005

678,9	100	0,025	0,125
699,1	100	0,055	-0,115
719,3	100	0,085	0,095
737,0	100	0,115	-0,085
747,1	100	0,145	0,065
757,2	100	0,175	-0,025
764,8	100	0,205	0,035
769,9	100	0,235	0,005
774,9	100	0,265	0,035
777,4	100	0,295	0,005
785,9	100	0,025	0,005
796,0	100	0,025	-0,115
816,2	100	-0,005	0,125
826,3	100	-0,035	-0,025
833,9	100	-0,065	0,035
841,4	100	-0,095	-0,025
849,0	100	-0,125	0,035
851,6	100	-0,155	0,005
857,4	100	0,025	0,005
865,0	100	0,025	0,095
885,2	100	0,055	-0,115
902,9	100	0,085	0,095
915,6	100	0,115	-0,055
923,1	100	0,145	0,035
930,7	100	0,175	-0,025

935,8	100	0,205	0,035
940,8	100	0,235	0,005
945,9	100	0,265	0,035
953,5	100	0,025	0,005
961,0	100	0,025	-0,085
978,7	100	-0,005	0,095
986,3	100	-0,035	-0,025
991,3	100	-0,065	0,035
996,4	100	-0,095	0,005
1 001,5	100	-0,125	0,035
1 006,5	100	0,025	0,005
1 014,1	100	0,025	0,095
1 031,8	100	0,055	-0,085
1 049,5	100	0,085	0,095
1 059,6	100	0,115	-0,025
1 067,1	100	0,145	0,035
1 072,2	100	0,175	0,005
1 077,2	100	0,205	0,035
1 082,3	100	0,235	0,005
1 084,8	100	0,265	0,005
1 092,4	100	0,025	0,005
1 100,0	100	0,025	-0,085
1 112,6	100	-0,005	0,065
1 120,2	100	-0,035	-0,025
1 125,3	100	-0,065	0,035
1 130,3	100	-0,095	0,005
1 135,4	100	-0,125	0,035
1 140,4	100	0,025	0,005
1 148,0	100	0,025	0,095
1 165,7	100	0,055	-0,085
1 180,8	100	0,085	0,065
1 188,4	100	0,115	-0,025
1 193,5	100	0,145	0,035
1 198,5	100	0,175	0,005
1 203,6	100	0,205	0,035
1 206,1	100	0,235	0,005
1 208,6	100	0,265	0,005

1 216,2	100	0,025	0,005
1 223,8	100	0,025	-0,085
1 236,4	100	-0,005	0,065
1 241,5	100	-0,035	0,005
1 246,5	100	-0,065	0,035
1 251,6	100	-0,095	0,005
1 256,6	100	-0,125	0,035
1 261,7	100	0,025	0,005
1 269,3	100	0,025	0,095
1 284,4	100	0,055	-0,085
1 299,6	100	0,085	0,065
1 307,2	100	0,115	-0,025
1 312,2	100	0,145	0,035
1 317,3	100	0,175	0,005
1 322,3	100	0,205	0,035
1 324,8	100	0,235	0,005
1 331,6	100	0,025	0,005
1 339,2	100	0,025	-0,085
1 351,8	100	-0,005	0,065
1 356,8	100	-0,035	0,005
1 361,9	100	-0,065	0,035
1 366,9	100	-0,095	0,005
1 372,0	100	-0,125	0,035
1 377,1	100	0,025	0,005
1 382,1	100	0,025	0,065
1 397,3	100	0,055	-0,085
1 409,9	100	0,085	0,065
1 417,5	100	0,115	-0,025
1 422,5	100	0,145	0,035
1 427,6	100	0,175	0,005
1 432,6	100	0,205	0,035
1 435,2	100	0,235	0,005
1 441,9	100	0,025	0,005
1 447,0	100	0,025	-0,055
1 457,1	100	-0,005	0,065
1 462,1	100	-0,035	0,005
1 467,2	100	-0,065	0,035

1 472,2	100	-0,095	0,005
1 477,3	100	-0,125	0,035
1 482,3	100	0,025	0,005
1 487,4	100	0,025	0,065
1 502,5	100	0,055	-0,085
1 515,2	100	0,085	0,065
1 522,7	100	0,115	-0,025
1 527,8	100	0,145	0,035
1 532,9	100	0,175	0,005
1 535,4	100	0,205	0,005
1 541,3	100	0,025	0,005
1 546,3	100	0,025	-0,055
1 556,4	100	-0,005	0,065
1 561,5	100	-0,035	0,005
1 566,5	100	-0,065	0,035
1 571,6	100	-0,095	0,005
1 576,6	100	-0,125	0,035
1 581,7	100	0,025	0,005
1 586,8	100	0,025	0,065
1 601,9	100	0,055	-0,085
1 614,5	100	0,085	0,065
1 619,6	100	0,115	0,005
1 624,6	100	0,145	0,035
1 629,7	100	0,175	0,005
1 632,2	100	0,205	0,005
1 638,1	100	0,025	0,005
1 643,2	100	0,025	-0,055
1 650,8	100	-0,005	0,035
1 655,8	100	-0,035	0,005
1 660,9	100	-0,065	0,035
1 663,4	100	-0,095	0,005
1 665,9	100	-0,125	0,005
1 671,0	100	0,025	0,005
1 676,0	100	0,025	0,065
1 691,2	100	0,055	-0,085
1 703,8	100	0,085	0,065
1 708,9	100	0,115	0,005

1 713,9	100	0,145	0,035
1 719,0	100	0,175	0,005
1 721,5	100	0,205	0,005
1 727,4	100	0,025	0,005
1 732,4	100	0,025	-0,055
1 740,0	100	-0,005	0,035
1 745,1	100	-0,035	0,005
1 747,6	100	-0,065	0,005
1 750,1	100	-0,095	0,005
1 752,7	100	-0,125	0,005
1 757,7	100	0,025	0,005
1 762,8	100	0,025	0,065
1 775,4	100	0,055	-0,055
1 788,0	100	0,085	0,065
1 793,1	100	0,115	0,005
1 798,1	100	0,145	0,035
1 800,7	100	0,175	0,005
1 803,2	100	0,205	0,005
1 809,1	100	0,025	0,005
1 814,1	100	0,025	-0,055
1 821,7	100	-0,005	0,035
1 826,8	100	-0,035	0,005
1 829,3	100	-0,065	0,005
1 831,8	100	-0,095	0,005
1 834,3	100	-0,125	0,005
1 839,4	100	0,025	0,005
1 844,5	100	0,025	0,065
1 857,1	100	0,055	-0,055
1 867,2	100	0,085	0,035
1 872,2	100	0,115	0,005
1 877,3	100	0,145	0,035
1 879,8	100	0,175	0,005
1 882,3	100	0,205	0,005
1 888,2	100	0,025	0,005
1 893,3	100	0,025	-0,055
1 900,9	100	-0,005	0,035
1 905,9	100	-0,035	0,005

1 908,5	100	-0,065	0,005
1 911,0	100	-0,095	0,005
1 913,5	100	-0,125	0,005
1 918,6	100	0,025	0,005
1 923,6	100	0,025	0,065
1 936,2	100	0,055	-0,055
1 946,4	100	0,085	0,035
1 951,4	100	0,115	0,005
1 956,5	100	0,145	0,035
1 959,0	100	0,175	0,005
1 964,0	100	0,025	0,005
1 969,1	100	0,025	-0,055
1 976,7	100	-0,005	0,035
1 981,7	100	-0,035	0,005
1 984,2	100	-0,065	0,005
1 986,8	100	-0,095	0,005
1 989,3	100	-0,125	0,005
1 994,4	100	0,025	0,005
1 999,4	100	0,025	0,065
2 009,5	100	0,055	-0,055
2 019,6	100	0,085	0,035
2 024,7	100	0,115	0,005
2 029,7	100	0,145	0,035
2 032,3	100	0,175	0,005
2 037,3	100	0,025	0,005
2 042,4	100	0,025	-0,055
2 049,9	100	-0,005	0,035
2 055,0	100	-0,035	0,005
2 057,5	100	-0,065	0,005
2 060,0	100	-0,095	0,005
2 062,6	100	-0,125	0,005
2 067,6	100	0,025	0,005
2 070,1	100	0,025	0,035
2 080,3	100	0,055	-0,055
2 087,8	100	0,085	0,035
2 092,9	100	0,115	0,005
2 097,9	100	0,145	0,035

2 100,5	100	0,175	0,005
2 105,5	100	0,025	0,005
2 108,0	100	0,025	-0,025
2 115,6	100	-0,005	0,035
2 120,7	100	-0,035	0,005
2 123,2	100	-0,065	0,005
2 125,7	100	-0,095	0,005
2 129,9	100	0,025	0,005
2 132,5	100	0,025	0,035
2 142,6	100	0,055	-0,055
2 150,2	100	0,085	0,035
2 155,2	100	0,115	0,005
2 160,3	100	0,145	0,035
2 162,8	100	0,175	0,005
2 167,8	100	0,025	0,005
2 170,4	100	0,025	-0,025
2 177,9	100	-0,005	0,035
2 180,5	100	-0,035	0,005
2 183,0	100	-0,065	0,005
2 186,4	100	0,025	0,005
2 188,9	100	0,025	0,035
2 199,0	100	0,055	-0,055
2 206,6	100	0,085	0,035
2 211,6	100	0,115	0,005
2 214,2	100	0,145	0,005
2 218,4	100	0,025	0,005
2 220,9	100	0,025	-0,025
2 228,5	100	-0,005	0,035
2 231,0	100	-0,035	0,005
2 233,5	100	0,025	0,005
2 236,1	100	0,025	0,035
2 246,2	100	0,055	-0,055
2 253,7	100	0,085	0,035
2 258,8	100	0,115	0,005
2 261,3	100	0,145	0,005
2 265,5	100	0,025	0,005
2 268,1	100	0,025	-0,025

2 275,6	100	-0,005	0,035
2 278,2	100	-0,035	0,005
2 280,7	100	0,025	0,005
2 283,2	100	0,025	0,035
2 293,3	100	0,055	-0,055
2 300,9	100	0,085	0,035
2 306,0	100	0,115	0,005
2 308,5	100	0,145	0,005
2 312,7	100	0,025	0,005
2 315,2	100	0,025	-0,025
2 322,8	100	-0,005	0,035
2 325,3	100	-0,035	0,005
2 327,8	100	0,025	0,005
2 330,4	100	0,025	0,035
2 340,5	100	0,055	-0,055
2 348,1	100	0,085	0,035
2 353,1	100	0,115	0,005
2 355,6	100	0,145	0,005
2 359,9	100	0,025	0,005
2 362,4	100	0,025	-0,025
2 370,0	100	-0,005	0,035
2 372,5	100	-0,035	0,005
2 375,0	100	0,025	0,005
2 377,5	100	0,025	0,035
2 385,1	100	0,055	-0,025
2 392,7	100	0,085	0,035
2 397,7	100	0,115	0,005
2 400,3	100	0,145	0,005
2 404,5	100	0,025	0,005
2 407,0	100	0,025	-0,025
2 412,1	100	-0,005	0,035
2 414,6	100	-0,035	0,005
2 417,1	100	0,025	0,005
2 419,6	100	0,025	0,035
2 427,2	100	0,055	-0,025
2 434,8	100	0,085	0,035
2 439,9	100	0,115	0,005

2 442,4	100	0,145	0,005
2 446,6	100	0,025	0,005
2 449,1	100	0,025	-0,025
2 454,2	100	-0,005	0,035
2 456,7	100	-0,035	0,005
2 459,2	100	0,025	0,005
2 461,8	100	0,025	0,035
2 469,3	100	0,055	-0,025
2 476,9	100	0,085	0,035
2 482,0	100	0,115	0,005
2 484,5	100	0,145	0,005
2 488,7	100	0,025	0,005
2 491,2	100	0,025	-0,025
2 496,3	100	-0,005	0,035
2 498,8	100	-0,035	0,005
2 501,3	100	0,025	0,005
2 503,9	100	0,025	0,035
2 511,4	100	0,055	-0,025
2 519,0	100	0,085	0,035
2 524,1	100	0,115	0,005
2 526,6	100	0,145	0,005
2 530,8	100	0,025	0,005
2 533,3	100	0,025	-0,025
2 538,4	100	-0,005	0,035
2 540,9	100	-0,035	0,005
2 543,4	100	0,025	0,005
2 546,0	100	0,025	0,035
2 553,5	100	0,055	-0,025
2 561,1	100	0,085	0,035
2 563,7	100	0,115	0,005
2 566,2	100	0,145	0,005
2 570,4	100	0,025	0,005
2 572,9	100	0,025	-0,025
2 578,0	100	-0,005	0,035
2 580,5	100	-0,035	0,005
2 583,0	100	0,025	0,005
2 585,5	100	0,025	0,035

2 593,1 100 0,085 -0,025 2 600,7 100 0,085 0,035 2 603,2 100 0,115 0,005 2 606,6 100 0,025 0,005 2 609,1 100 -0,025 -0,025 2 614,2 100 -0,035 0,005 2 616,7 100 -0,035 0,005 2 619,2 100 0,025 0,035 2 629,3 100 0,025 0,035 2 636,9 100 0,085 0,035 2 642,8 100 0,025 0,005 2 642,8 100 0,025 0,005 2 643,3 100 0,025 0,005 2 650,4 100 -0,005 0,035 2 652,1 100 0,025 0,005 2 654,6 100 0,025 0,005 2 669,8 100 0,085 0,035 2 675,7 100 0,025 0,005 2 683,2				
2 603,2 100 0,115 0,005 2 606,6 100 0,025 0,005 2 609,1 100 0,025 -0,025 2 614,2 100 -0,005 0,035 2 616,7 100 -0,035 0,005 2 619,2 100 0,025 0,035 2 621,8 100 0,055 -0,025 2 636,9 100 0,085 0,035 2 639,4 100 0,115 0,005 2 642,8 100 0,025 0,005 2 642,8 100 0,025 0,005 2 642,8 100 0,025 0,005 2 650,4 100 -0,005 0,035 2 652,1 100 0,025 0,005 2 654,6 100 0,025 0,005 2 669,8 100 0,085 0,035 2 675,7 100 0,025 0,005 2 678,2 100 0,025 0,005 2 684,9	2 593,1	100	0,055	-0,025
2 606,6 100 0,025 0,005 2 609,1 100 0,025 -0,025 2 614,2 100 -0,005 0,035 2 616,7 100 -0,035 0,005 2 619,2 100 0,025 0,005 2 621,8 100 0,025 0,035 2 636,9 100 0,085 0,035 2 639,4 100 0,025 0,005 2 642,8 100 0,025 0,005 2 645,3 100 0,025 0,005 2 652,1 100 0,025 0,005 2 652,1 100 0,025 0,005 2 652,1 100 0,025 0,005 2 662,2 100 0,025 0,035 2 662,2 100 0,025 0,025 2 669,8 100 0,085 0,035 2 675,7 100 0,025 0,005 2 684,9 100 0,025 0,005 2 684,9 <	2 600,7	100	0,085	0,035
2 609,1 100 0,025 -0,025 2 614,2 100 -0,005 0,035 2 616,7 100 -0,035 0,005 2 619,2 100 0,025 0,035 2 621,8 100 0,025 0,035 2 629,3 100 0,055 -0,025 2 636,9 100 0,085 0,035 2 642,8 100 0,025 0,005 2 645,3 100 0,025 0,005 2 652,1 100 0,025 0,005 2 652,1 100 0,025 0,005 2 652,1 100 0,025 0,035 2 662,2 100 0,055 -0,025 2 669,8 100 0,085 0,035 2 672,3 100 0,115 0,005 2 678,2 100 0,025 0,025 2 683,2 100 -0,025 0,035 2 687,4 100 0,025 0,035 2 695,0	2 603,2	100	0,115	0,005
2 614,2 100 -0,005 0,035 2 616,7 100 -0,035 0,005 2 619,2 100 0,025 0,005 2 621,8 100 0,025 0,035 2 629,3 100 0,055 -0,025 2 636,9 100 0,085 0,035 2 639,4 100 0,115 0,005 2 642,8 100 0,025 -0,025 2 645,3 100 0,025 -0,025 2 650,4 100 -0,005 0,035 2 652,1 100 0,025 0,005 2 652,1 100 0,025 0,035 2 662,2 100 0,055 -0,025 2 669,8 100 0,085 0,035 2 675,7 100 0,025 0,005 2 678,2 100 0,025 0,005 2 684,9 100 0,025 0,035 2 695,0 100 0,055 -0,025 2 702,6	2 606,6	100	0,025	0,005
2 616,7 100 -0,035 0,005 2 619,2 100 0,025 0,005 2 621,8 100 0,025 0,035 2 629,3 100 0,085 0,035 2 636,9 100 0,085 0,035 2 642,8 100 0,025 0,005 2 645,3 100 0,025 -0,025 2 650,4 100 -0,005 0,035 2 652,1 100 0,025 0,005 2 662,2 100 0,025 0,035 2 662,2 100 0,055 -0,025 2 669,8 100 0,085 0,035 2 672,3 100 0,115 0,005 2 678,2 100 0,025 -0,025 2 683,2 100 -0,025 0,035 2 684,9 100 0,025 0,035 2 687,4 100 0,025 0,025 2 702,6 100 0,085 0,035 2 708,5	2 609,1	100	0,025	-0,025
2 619,2 100 0,025 0,005 2 621,8 100 0,025 0,035 2 629,3 100 0,055 -0,025 2 636,9 100 0,085 0,035 2 639,4 100 0,115 0,005 2 642,8 100 0,025 0,005 2 645,3 100 -0,005 0,035 2 650,4 100 -0,005 0,035 2 654,6 100 0,025 0,005 2 662,2 100 0,025 0,035 2 669,8 100 0,085 0,035 2 675,7 100 0,025 0,005 2 678,2 100 0,025 0,005 2 683,2 100 -0,005 0,035 2 684,9 100 0,025 0,005 2 687,4 100 0,025 0,005 2 702,6 100 0,085 0,035 2 708,5 100 0,025 0,005 2 716,1	2 614,2	100	-0,005	0,035
2 621,8 100 0,025 0,035 2 629,3 100 0,055 -0,025 2 636,9 100 0,085 0,035 2 639,4 100 0,115 0,005 2 642,8 100 0,025 0,005 2 645,3 100 0,025 -0,025 2 652,1 100 0,025 0,035 2 652,1 100 0,025 0,035 2 662,2 100 0,055 -0,025 2 669,8 100 0,085 0,035 2 675,7 100 0,025 0,005 2 678,2 100 0,025 0,005 2 683,2 100 -0,005 0,035 2 684,9 100 0,025 0,005 2 687,4 100 0,025 0,005 2 702,6 100 0,085 0,035 2 705,1 100 0,025 0,005 2 711,0 100 0,025 0,005 2 717,8	2 616,7	100	-0,035	0,005
2 629,3 100 0,055 -0,025 2 636,9 100 0,085 0,035 2 639,4 100 0,115 0,005 2 642,8 100 0,025 0,005 2 645,3 100 -0,005 0,035 2 650,4 100 -0,005 0,035 2 654,6 100 0,025 0,005 2 662,2 100 0,055 -0,025 2 669,8 100 0,085 0,035 2 672,3 100 0,115 0,005 2 678,2 100 0,025 -0,025 2 683,2 100 -0,025 0,035 2 684,9 100 0,025 0,035 2 695,0 100 0,025 0,035 2 702,6 100 0,085 0,035 2 708,5 100 0,025 0,005 2 711,0 100 0,025 0,005 2 717,8 100 0,025 0,035 2 720,3	2 619,2	100	0,025	0,005
2 636,9 100 0,085 0,035 2 639,4 100 0,115 0,005 2 642,8 100 0,025 0,005 2 645,3 100 0,025 -0,025 2 650,4 100 -0,005 0,035 2 652,1 100 0,025 0,005 2 662,2 100 0,055 -0,025 2 669,8 100 0,085 0,035 2 672,3 100 0,115 0,005 2 678,2 100 0,025 -0,025 2 683,2 100 -0,005 0,035 2 684,9 100 0,025 0,005 2 687,4 100 0,025 0,035 2 695,0 100 0,085 0,035 2 702,6 100 0,085 0,035 2 705,1 100 0,015 -0,025 2 711,0 100 0,025 0,005 2 716,1 100 -0,005 0,035 2 720,3	2 621,8	100	0,025	0,035
2 639,4 100 0,115 0,005 2 642,8 100 0,025 0,005 2 645,3 100 0,025 -0,025 2 650,4 100 -0,005 0,035 2 652,1 100 0,025 0,035 2 654,6 100 0,025 0,035 2 662,2 100 0,085 0,035 2 672,3 100 0,115 0,005 2 675,7 100 0,025 -0,025 2 678,2 100 -0,025 -0,025 2 683,2 100 -0,005 0,035 2 684,9 100 0,025 0,005 2 687,4 100 0,025 0,035 2 695,0 100 0,085 0,035 2 702,6 100 0,085 0,035 2 705,1 100 0,025 0,005 2 711,0 100 0,025 0,005 2 717,8 100 0,025 0,005 2 720,3	2 629,3	100	0,055	-0,025
2 642,8 100 0,025 0,005 2 645,3 100 0,025 -0,025 2 650,4 100 -0,005 0,035 2 652,1 100 0,025 0,005 2 654,6 100 0,025 0,035 2 662,2 100 0,085 0,035 2 669,8 100 0,085 0,035 2 672,3 100 0,115 0,005 2 678,2 100 0,025 0,005 2 683,2 100 -0,005 0,035 2 684,9 100 0,025 0,005 2 687,4 100 0,025 0,035 2 695,0 100 0,055 -0,025 2 702,6 100 0,085 0,035 2 708,5 100 0,025 0,005 2 711,0 100 0,025 0,005 2 717,8 100 0,025 0,035 2 720,3 100 0,055 -0,025 2 735,5	2 636,9	100	0,085	0,035
2 645,3 100 0,025 -0,025 2 650,4 100 -0,005 0,035 2 652,1 100 0,025 0,005 2 654,6 100 0,025 0,035 2 662,2 100 0,055 -0,025 2 669,8 100 0,085 0,035 2 672,3 100 0,115 0,005 2 675,7 100 0,025 -0,025 2 683,2 100 -0,025 0,005 2 684,9 100 0,025 0,035 2 695,0 100 0,025 0,025 2 702,6 100 0,085 0,035 2 705,1 100 0,015 0,005 2 708,5 100 0,025 0,005 2 716,1 100 -0,005 0,035 2 717,8 100 0,025 0,005 2 720,3 100 0,025 0,025 2 735,5 100 0,085 0,035 2 738,0	2 639,4	100	0,115	0,005
2 650,4 100 -0,005 0,035 2 652,1 100 0,025 0,005 2 654,6 100 0,025 0,035 2 662,2 100 0,055 -0,025 2 669,8 100 0,085 0,035 2 672,3 100 0,115 0,005 2 678,2 100 0,025 0,005 2 683,2 100 -0,005 0,035 2 684,9 100 0,025 0,005 2 687,4 100 0,025 0,035 2 695,0 100 0,055 -0,025 2 702,6 100 0,085 0,035 2 708,5 100 0,025 0,005 2 711,0 100 0,025 -0,025 2 716,1 100 -0,005 0,035 2 720,3 100 0,025 0,005 2 735,5 100 0,085 0,035 2 738,0 100 0,115 0,005	2 642,8	100	0,025	0,005
2 652,1 100 0,025 0,005 2 654,6 100 0,025 0,035 2 662,2 100 0,055 -0,025 2 669,8 100 0,085 0,035 2 672,3 100 0,115 0,005 2 675,7 100 0,025 0,005 2 678,2 100 -0,005 0,035 2 683,2 100 -0,005 0,035 2 684,9 100 0,025 0,005 2 695,0 100 0,055 -0,025 2 702,6 100 0,085 0,035 2 705,1 100 0,115 0,005 2 708,5 100 0,025 0,005 2 711,0 100 0,025 0,005 2 716,1 100 -0,005 0,035 2 720,3 100 0,025 0,005 2 720,3 100 0,055 -0,025 2 735,5 100 0,085 0,035 2 738,0	2 645,3	100	0,025	-0,025
2 654,6 100 0,025 0,035 2 662,2 100 0,055 -0,025 2 669,8 100 0,085 0,035 2 672,3 100 0,115 0,005 2 675,7 100 0,025 0,005 2 678,2 100 -0,005 0,035 2 683,2 100 -0,005 0,035 2 687,4 100 0,025 0,005 2 695,0 100 0,055 -0,025 2 702,6 100 0,085 0,035 2 705,1 100 0,115 0,005 2 708,5 100 0,025 0,005 2 711,0 100 0,025 0,025 2 717,8 100 0,025 0,005 2 720,3 100 0,025 0,035 2 735,5 100 0,085 0,035 2 738,0 100 0,115 0,005	2 650,4	100	-0,005	0,035
2 662,2 100 0,055 -0,025 2 669,8 100 0,085 0,035 2 672,3 100 0,115 0,005 2 675,7 100 0,025 0,005 2 678,2 100 -0,005 0,035 2 683,2 100 -0,005 0,035 2 684,9 100 0,025 0,005 2 687,4 100 0,025 0,035 2 702,6 100 0,085 0,035 2 705,1 100 0,015 0,005 2 708,5 100 0,025 0,005 2 711,0 100 0,025 0,025 2 716,1 100 -0,025 0,035 2 720,3 100 0,025 0,035 2 720,3 100 0,025 0,035 2 735,5 100 0,085 0,035 2 738,0 100 0,115 0,005	2 652,1	100	0,025	0,005
2 669,8 100 0,085 0,035 2 672,3 100 0,115 0,005 2 675,7 100 0,025 0,005 2 678,2 100 0,025 -0,025 2 683,2 100 -0,005 0,035 2 684,9 100 0,025 0,005 2 687,4 100 0,025 0,035 2 695,0 100 0,085 0,035 2 702,6 100 0,085 0,035 2 708,5 100 0,025 0,005 2 711,0 100 0,025 -0,025 2 716,1 100 -0,025 0,035 2 717,8 100 0,025 0,035 2 720,3 100 0,025 0,035 2 735,5 100 0,085 0,035 2 738,0 100 0,115 0,005	2 654,6	100	0,025	0,035
2 672,3 100 0,115 0,005 2 675,7 100 0,025 0,005 2 678,2 100 0,025 -0,025 2 683,2 100 -0,005 0,035 2 684,9 100 0,025 0,005 2 687,4 100 0,025 0,035 2 695,0 100 0,085 0,035 2 702,6 100 0,085 0,035 2 708,5 100 0,025 0,005 2 711,0 100 0,025 -0,025 2 716,1 100 -0,005 0,035 2 717,8 100 0,025 0,005 2 720,3 100 0,025 0,035 2 727,9 100 0,055 -0,025 2 735,5 100 0,085 0,035 2 738,0 100 0,115 0,005	2 662,2	100	0,055	-0,025
2 675,7 100 0,025 0,005 2 678,2 100 0,025 -0,025 2 683,2 100 -0,005 0,035 2 684,9 100 0,025 0,005 2 687,4 100 0,025 0,035 2 695,0 100 0,055 -0,025 2 702,6 100 0,085 0,035 2 708,5 100 0,025 0,005 2 711,0 100 0,025 -0,025 2 716,1 100 -0,005 0,035 2 717,8 100 0,025 0,005 2 720,3 100 0,025 0,035 2 727,9 100 0,055 -0,025 2 735,5 100 0,085 0,035 2 738,0 100 0,115 0,005	2 669,8	100	0,085	0,035
2 678,2 100 0,025 -0,025 2 683,2 100 -0,005 0,035 2 684,9 100 0,025 0,005 2 687,4 100 0,025 0,035 2 695,0 100 0,055 -0,025 2 702,6 100 0,085 0,035 2 705,1 100 0,115 0,005 2 708,5 100 0,025 0,005 2 711,0 100 0,025 -0,025 2 716,1 100 -0,005 0,035 2 717,8 100 0,025 0,005 2 720,3 100 0,025 0,035 2 727,9 100 0,055 -0,025 2 735,5 100 0,085 0,035 2 738,0 100 0,115 0,005	2 672,3	100	0,115	0,005
2 683,2 100 -0,005 0,035 2 684,9 100 0,025 0,005 2 687,4 100 0,025 0,035 2 695,0 100 0,055 -0,025 2 702,6 100 0,085 0,035 2 705,1 100 0,115 0,005 2 708,5 100 0,025 0,005 2 711,0 100 0,025 -0,025 2 716,1 100 -0,005 0,035 2 717,8 100 0,025 0,005 2 720,3 100 0,025 0,035 2 727,9 100 0,055 -0,025 2 735,5 100 0,085 0,035 2 738,0 100 0,115 0,005	2 675,7	100	0,025	0,005
2 684,9 100 0,025 0,005 2 687,4 100 0,025 0,035 2 695,0 100 0,055 -0,025 2 702,6 100 0,085 0,035 2 705,1 100 0,115 0,005 2 708,5 100 0,025 0,005 2 711,0 100 0,025 -0,025 2 716,1 100 -0,005 0,035 2 717,8 100 0,025 0,005 2 720,3 100 0,025 0,035 2 727,9 100 0,055 -0,025 2 735,5 100 0,085 0,035 2 738,0 100 0,115 0,005	2 678,2	100	0,025	-0,025
2 687,4 100 0,025 0,035 2 695,0 100 0,055 -0,025 2 702,6 100 0,085 0,035 2 705,1 100 0,115 0,005 2 708,5 100 0,025 0,005 2 711,0 100 0,025 -0,025 2 716,1 100 -0,005 0,035 2 717,8 100 0,025 0,005 2 720,3 100 0,025 0,035 2 727,9 100 0,055 -0,025 2 735,5 100 0,085 0,035 2 738,0 100 0,115 0,005	2 683,2	100	-0,005	0,035
2 695,0 100 0,055 -0,025 2 702,6 100 0,085 0,035 2 705,1 100 0,115 0,005 2 708,5 100 0,025 0,005 2 711,0 100 0,025 -0,025 2 716,1 100 -0,005 0,035 2 717,8 100 0,025 0,005 2 720,3 100 0,025 0,035 2 727,9 100 0,055 -0,025 2 735,5 100 0,085 0,035 2 738,0 100 0,115 0,005	2 684,9	100	0,025	0,005
2 702,6 100 0,085 0,035 2 705,1 100 0,115 0,005 2 708,5 100 0,025 0,005 2 711,0 100 0,025 -0,025 2 716,1 100 -0,005 0,035 2 717,8 100 0,025 0,005 2 720,3 100 0,025 0,035 2 727,9 100 0,055 -0,025 2 735,5 100 0,085 0,035 2 738,0 100 0,115 0,005	2 687,4	100	0,025	0,035
2 705,1 100 0,115 0,005 2 708,5 100 0,025 0,005 2 711,0 100 0,025 -0,025 2 716,1 100 -0,005 0,035 2 717,8 100 0,025 0,005 2 720,3 100 0,025 0,035 2 727,9 100 0,055 -0,025 2 735,5 100 0,085 0,035 2 738,0 100 0,115 0,005	2 695,0	100	0,055	-0,025
2 708,5 100 0,025 0,005 2 711,0 100 0,025 -0,025 2 716,1 100 -0,005 0,035 2 717,8 100 0,025 0,005 2 720,3 100 0,025 0,035 2 727,9 100 0,055 -0,025 2 735,5 100 0,085 0,035 2 738,0 100 0,115 0,005	2 702,6	100	0,085	0,035
2 711,0 100 0,025 -0,025 2 716,1 100 -0,005 0,035 2 717,8 100 0,025 0,005 2 720,3 100 0,025 0,035 2 727,9 100 0,055 -0,025 2 735,5 100 0,085 0,035 2 738,0 100 0,115 0,005	2 705,1	100	0,115	0,005
2 716,1 100 -0,005 0,035 2 717,8 100 0,025 0,005 2 720,3 100 0,025 0,035 2 727,9 100 0,055 -0,025 2 735,5 100 0,085 0,035 2 738,0 100 0,115 0,005	2 708,5	100	0,025	0,005
2 717,8 100 0,025 0,005 2 720,3 100 0,025 0,035 2 727,9 100 0,055 -0,025 2 735,5 100 0,085 0,035 2 738,0 100 0,115 0,005	2 711,0	100	0,025	-0,025
2 720,3 100 0,025 0,035 2 727,9 100 0,055 -0,025 2 735,5 100 0,085 0,035 2 738,0 100 0,115 0,005	2 716,1	100	-0,005	0,035
2 727,9 100 0,055 -0,025 2 735,5 100 0,085 0,035 2 738,0 100 0,115 0,005	2 717,8	100	0,025	0,005
2 735,5 100 0,085 0,035 2 738,0 100 0,115 0,005	2 720,3	100	0,025	0,035
2 738,0 100 0,115 0,005	2 727,9	100	0,055	-0,025
	2 735,5	100	0,085	0,035
2 741,3 100 0,025 0,005	2 738,0	100	0,115	0,005
	2 741,3	100	0,025	0,005

2 743,9	100	0,025	-0,025
2 748,9	100	-0,005	0,035
2 750,6	100	0,025	0,005
2 753,1	100	0,025	0,035
2 760,7	100	0,055	-0,025
2 765,8	100	0,085	0,035
2 768,3	100	0,115	0,005
2 771,7	100	0,025	0,005
2 774,2	100	0,025	-0,025
2 779,2	100	-0,005	0,035
2 780,9	100	0,025	0,005
2 783,5	100	0,025	0,035
2 791,0	100	0,055	-0,025
2 796,1	100	0,085	0,035
2 798,6	100	0,115	0,005
2 802,0	100	0,025	0,005
2 804,5	100	0,025	-0,025
2 809,6	100	-0,005	0,035
2 811,2	100	0,025	0,005
2 813,8	100	0,025	0,035
2 821,4	100	0,055	-0,025
2 826,4	100	0,085	0,035
2 828,9	100	0,115	0,005
2 832,3	100	0,025	0,005
2 834,8	100	0,025	-0,025
2 839,9	100	-0,005	0,035
2 841,6	100	0,025	0,005
2 844,1	100	0,025	0,035
2 851,7	100	0,055	-0,025
2 856,7	100	0,085	0,035
2 859,2	100	0,115	0,005
2 862,6	100	0,025	0,005
2 865,1	100	0,025	-0,025
2 870,2	100	-0,005	0,035
2 871,9	100	0,025	0,005
2 874,4	100	0,025	0,035
2 882,0	100	0,055	-0,025

2 887,0	100	0,085	0,035
2 889,6	100	0,115	0,005
2 892,9	100	0,025	0,005
2 895,5	100	0,025	-0,025
2 900,5	100	-0,005	0,035
2 902,2	100	0,025	0,005
2 904,7	100	0,025	0,035
2 912,3	100	0,055	-0,025
2 917,4	100	0,085	0,035
2 919,9	100	0,115	0,005
2 923,3	100	0,025	0,005
2 925,8	100	0,025	-0,025
2 930,8	100	-0,005	0,035
2 932,5	100	0,025	0,005
2 935,0	100	0,025	0,035
2 942,6	100	0,055	-0,025
2 947,7	100	0,085	0,035
2 950,2	100	0,025	0,005
2 952,7	100	0,025	-0,025
2 957,8	100	-0,005	0,035
2 959,5	100	0,025	0,005
2 962,0	100	0,025	0,035
2 969,6	100	0,055	-0,025
2 974,6	100	0,085	0,035
2 977,2	100	0,025	0,005
2 979,7	100	0,025	-0,025
2 984,7	100	-0,005	0,035
2 986,4	100	0,025	0,005
2 988,9	100	0,025	0,035
2 996,5	100	0,055	-0,025
3 001,6	100	0,085	0,035
3 004,1	100	0,025	0,005
3 006,6	100	0,025	-0,025
3 011,7	100	-0,005	0,035
3 013,4	100	0,025	0,005
3 015,9	100	0,025	0,035
3 023,5	100	0,055	-0,025

3 028,5	100	0,085	0,035
3 031,0	100	0,025	0,005
3 036,1	100	0,025	0,005
3 041,2	100	-0,005	0,035
3 042,8	100	0,025	0,005
3 045,4	100	0,025	0,035
3 052,9	100	0,055	-0,025
3 058,0	100	0,085	0,035
3 060,5	100	0,025	0,005
3 065,6	100	0,025	0,005
3 070,6	100	-0,005	0,035
3 072,3	100	0,025	0,005
3 074,8	100	0,025	0,035
3 082,4	100	0,055	-0,025
3 087,5	100	0,085	0,035
3 090,0	100	0,025	0,005
3 095,1	100	0,025	0,005
3 100,1	100	-0,005	0,035
3 101,8	100	0,025	0,005
3 104,3	100	0,025	0,035
3 111,9	100	0,055	-0,025
3 116,9	100	0,085	0,035
3 119,5	100	0,025	0,005
3 124,5	100	0,025	0,005
3 129,6	100	-0,005	0,035
3 131,3	100	0,025	0,005
3 133,8	100	0,025	0,035
3 141,4	100	0,055	-0,025
3 146,4	100	0,085	0,035
3 149,0	100	0,025	0,005
3 154,0	100	0,025	0,005
3 159,1	100	-0,005	0,035
3 160,7	100	0,025	0,005
3 163,3	100	0,025	0,035
3 170,8	100	0,055	-0,025
3 175,9	100	0,085	0,035
3 178,4	100	0,025	0,005

3 183,5	100	0,025	0,005
3 188,5	100	-0,005	0,035
3 190,2	100	0,025	0,005
3 192,7	100	0,025	0,035
3 197,8	100	0,055	0,005
3 202,8	100	0,085	0,035
3 205,4	100	0,025	0,005
3 210,4	100	0,025	0,005
3 215,5	100	-0,005	0,035
3 217,2	100	0,025	0,005
3 219,7	100	0,025	0,035
3 224,7	100	0,055	0,005
3 229,8	100	0,085	0,035
3 232,3	100	0,025	0,005
3 237,4	100	0,025	0,005
3 242,4	100	-0,005	0,035
3 244,1	100	0,025	0,005
3 246,6	100	0,025	0,035
3 251,7	100	0,055	0,005
3 256,7	100	0,085	0,035
3 259,3	100	0,025	0,005
3 264,3	100	0,025	0,005
3 269,4	100	-0,005	0,035
3 271,1	100	0,025	0,005
3 273,6	100	0,025	0,035
3 278,6	100	0,055	0,005
3 283,7	100	0,085	0,035
3 286,2	100	0,025	0,005
3 291,3	100	0,025	0,005
3 296,3	100	-0,005	0,035
3 298,0	100	0,025	0,005
3 300,5	100	0,025	0,035
3 305,6	100	0,055	0,005
3 310,6	100	0,085	0,035
3 313,2	100	0,025	0,005
3 318,2	100	0,025	0,005
3 323,3	100	-0,005	0,035

3 325,0	100	0,025	0,005
3 327,5	100	0,025	0,035
3 332,5	100	0,055	0,005
3 335,1	100	0,085	0,005
3 337,6	100	0,025	0,005
3 342,6	100	0,025	0,005
3 347,7	100	-0,005	0,035
3 349,4	100	0,025	0,005
3 351,9	100	0,025	0,035
3 357,0	100	0,055	0,005
3 359,5	100	0,085	0,005
3 362,0	100	0,025	0,005
3 367,1	100	0,025	0,005
3 372,1	100	-0,005	0,035
3 373,8	100	0,025	0,005
3 376,3	100	0,025	0,035
3 381,4	100	0,055	0,005
3 383,9	100	0,085	0,005
3 386,4	100	0,025	0,005
3 391,5	100	0,025	0,005
3 394,0	100	-0,005	0,005
3 395,7	100	0,025	0,005
3 398,2	100	0,025	0,035
3 403,3	100	0,055	0,005
3 405,8	100	0,085	0,005
3 408,3	100	0,025	0,005
3 413,4	100	0,025	0,005
3 415,9	100	-0,005	0,005
3 417,6	100	0,025	0,005
3 420,1	100	0,025	0,035
3 425,2	100	0,055	0,005
3 427,7	100	0,085	0,005
3 430,2	100	0,025	0,005
3 435,3	100	0,025	0,005
3 437,8	100	-0,005	0,005
3 439,5	100	0,025	0,005
3 442,0	100	0,025	0,035

3 447,1	100	0,055	0,005
3 449,6	100	0,085	0,005
3 452,1	100	0,025	0,005
3 457,2	100	0,025	0,005
3 459,7	100	-0,005	0,005
3 461,4	100	0,025	0,005
3 463,9	100	0,025	0,035
3 469,0	100	0,055	0,005
3 471,5	100	0,085	0,005
3 474,0	100	0,025	0,005
3 479,1	100	0,025	0,005
3 481,6	100	-0,005	0,005
3 483,3	100	0,025	0,005
3 485,8	100	0,025	0,035
3 490,9	100	0,055	0,005
3 493,4	100	0,085	0,005
3 495,9	100	0,025	0,005
3 501,0	100	0,025	0,005
3 503,5	100	-0,005	0,005
3 505,2	100	0,025	0,005
3 507,7	100	0,025	0,035
3 512,8	100	0,055	0,005
3 515,3	100	0,085	0,005
3 517,8	100	0,025	0,005
3 522,9	100	0,025	0,005
3 525,4	100	-0,005	0,005
3 527,1	100	0,025	0,005
3 529,6	100	0,025	0,035
3 534,7	100	0,055	0,005
3 537,2	100	0,085	0,005
3 539,7	100	0,025	0,005
3 544,8	100	0,025	0,005
3 547,3	100	-0,005	0,005
3 549,0	100	0,025	0,005
3 551,5	100	0,025	0,035
3 556,6	100	0,055	0,005
3 559,1	100	0,085	0,005

3 561,6	100	0,025	0,005
3 566,7	100	0,025	0,005
3 569,2	100	-0,005	0,005
3 570,9	100	0,025	0,005
3 573,4	100	0,025	0,035
3 578,5	100	0,055	0,005
3 581,0	100	0,085	0,005
3 583,5	100	0,025	0,005
3 588,6	100	0,025	0,005
3 591,1	100	-0,005	0,005
3 592,8	100	0,025	0,005
3 595,3	100	0,025	0,035
3 600,3	100	0,055	0,005
3 602,9	100	0,085	0,005
3 605,4	100	0,025	0,005
3 610,5	100	0,025	0,005
3 613,0	100	-0,005	0,005
3 614,7	100	0,025	0,005
3 617,2	100	0,025	0,035
3 619,7	100	0,055	0,005
3 622,2	100	0,085	0,005
3 624,8	100	0,025	0,005
3 629,8	100	0,025	0,005
3 632,3	100	-0,005	0,005
3 634,0	100	0,025	0,005
3 636,6	100	0,025	0,035
3 639,1	100	0,055	0,005
3 641,6	100	0,085	0,005
3 644,1	100	0,025	0,005
3 649,2	100	0,025	0,005
3 651,7	100	-0,005	0,005
3 653,4	100	0,025	0,005
3 655,9	100	0,025	0,035
3 658,5	100	0,055	0,005
3 661,0	100	0,085	0,005
3 663,5	100	0,025	0,005
3 668,6	100	0,025	0,005

3 671,1	100	-0,005	0,005
3 672,8	100	0,025	0,005
3 675,3	100	0,025	0,035
3 677,8	100	0,055	0,005
3 680,4	100	0,085	0,005
3 682,9	100	0,025	0,005
3 687,9	100	0,025	0,005
3 690,5	100	-0,005	0,005
3 692,1	100	0,025	0,005
3 694,7	100	0,025	0,035
3 697,2	100	0,055	0,005
3 699,7	100	0,085	0,005
3 702,2	100	0,025	0,005
3 707,3	100	0,025	0,005
3 709,8	100	-0,005	0,005
3 711,5	100	0,025	0,005
3 714,0	100	0,025	0,035
3 716,6	100	0,055	0,005
3 719,1	100	0,085	0,005
3 721,6	100	0,025	0,005
3 726,7	100	0,025	0,005
3 729,2	100	-0,005	0,005
3 730,9	100	0,025	0,005
3 733,4	100	0,025	0,035
3 735,9	100	0,055	0,005
3 738,5	100	0,085	0,005
3 741,0	100	0,025	0,005
3 746,0	100	0,025	0,005
3 748,6	100	-0,005	0,005
3 750,3	100	0,025	0,005
3 752,8	100	0,025	0,035
3 755,3	100	0,055	0,005
3 757,8	100	0,085	0,005
3 760,4	100	0,025	0,005
3 765,4	100	0,025	0,005
3 767,9	100	-0,005	0,005
3 769,6	100	0,025	0,005
-	i		

3 772,1	100	0,025	0,035
3 774,7	100	0,055	0,005
3 777,2	100	0,085	0,005
3 779,7	100	0,025	0,005
3 784,8	100	0,025	0,005
3 787,3	100	-0,005	0,005
3 789,0	100	0,025	0,005
3 791,5	100	0,025	0,035
3 794,0	100	0,055	0,005
3 796,6	100	0,085	0,005
3 799,1	100	0,025	0,005
3 804,1	100	0,025	0,005
3 806,7	100	-0,005	0,005
3 808,4	100	0,025	0,005
3 810,9	100	0,025	0,035
3 813,4	100	0,055	0,005
3 815,9	100	0,085	0,005
3 818,5	100	0,025	0,005
3 823,5	100	0,025	0,005
3 826,0	100	-0,005	0,005
3 827,7	100	0,025	0,005
3 830,3	100	0,025	0,035
3 832,8	100	0,055	0,005
3 835,3	100	0,085	0,005
3 837,8	100	0,025	0,005
3 842,9	100	0,025	0,005
3 845,4	100	-0,005	0,005
3 847,1	100	0,025	0,005
3 849,6	100	0,025	0,035
3 852,2	100	0,055	0,005
3 854,7	100	0,085	0,005
3 857,2	100	0,025	0,005
3 862,3	100	0,025	0,005
3 864,8	100	-0,005	0,005
3 866,5	100	0,025	0,005
3 869,0	100	0,025	0,035
3 871,5	100	0,055	0,005

3 873,2	100	0,025	0,005
3 878,3	100	0,025	0,005
3 880,8	100	-0,005	0,005
3 882,5	100	0,025	0,005
3 885,0	100	0,025	0,035
3 887,5	100	0,055	0,005
3 889,2	100	0,025	0,005
3 894,3	100	0,025	0,005
3 896,8	100	-0,005	0,005
3 898,5	100	0,025	0,005
3 901,0	100	0,025	0,035
3 903,5	100	0,055	0,005
3 905,2	100	0,025	0,005
3 910,3	100	0,025	0,005
3 912,8	100	-0,005	0,005
3 914,5	100	0,025	0,005
3 917,0	100	0,025	0,035
3 919,5	100	0,055	0,005
3 921,2	100	0,025	0,005
3 926,3	100	0,025	0,005
3 928,8	100	-0,005	0,005
3 930,5	100	0,025	0,005
3 933,0	100	0,025	0,035
3 935,5	100	0,055	0,005
3 937,2	100	0,025	0,005
3 942,3	100	0,025	0,005
3 944,8	100	-0,005	0,005
3 946,5	100	0,025	0,005
3 951,5	100	0,025	0,005
3 954,1	100	0,055	0,005
3 955,7	100	0,025	0,005
3 960,8	100	0,025	0,005
3 963,3	100	-0,005	0,005
3 965,0	100	0,025	0,005
4 015,0	60	0,000	0,000
5 188,3	60	0,025	0,005
5 221,7	60	0,025	0,365

5 291,3	60	0,055	-0,355
5 358,1	60	0,085	0,335
5 416,6	60	0,115	-0,325
5 458,3	60	0,145	0,245
5 486,2	60	0,175	-0,085
5 497,3	60	0,205	0,065
5 505,6	60	0,235	-0,025
5 511,2	60	0,265	0,035
5 514,0	60	0,295	0,005
5 523,3	60	0,025	0,005
5 562,2	60	0,025	-0,415
5 637,4	60	-0,005	0,365
5 693,1	60	-0,035	-0,235
5 737,6	60	-0,065	0,215
5 779,3	60	-0,095	-0,235
5 801,6	60	-0,125	0,095
5 818,3	60	-0,155	-0,055
5 826,7	60	-0,185	0,035
5 835,0	60	-0,215	-0,025
5 837,8	60	-0,245	0,005
5 847,1	60	0,025	0,005
5 877,7	60	0,025	0,335
5 941,7	60	0,055	-0,325
5 991,8	60	0,085	0,275
6 033,6	60	0,115	-0,175
6 047,5	60	0,145	0,065
6 055,8	60	0,175	-0,025
6 061,4	60	0,205	0,035
6 067,0	60	0,235	0,005
6 074,4	60	0,025	0,005
6 107,8	60	0,025	-0,355
6 169,0	60	-0,005	0,335
6 202,4	60	-0,035	-0,175
6 227,5	60	-0,065	0,095
6 246,9	60	-0,095	-0,085
6 258,1	60	-0,125	0,065
6 266,4	60	-0,155	-0,025

6 269,2 60 -0,185 0,00 6 276,6 60 0,025 0,00 6 307,3 60 0,025 0,33 6 360,1 60 0,055 -0,26 6 404,7 60 0,085 0,24 6 429,7 60 0,115 -0,08	
6 307,3 60 0,025 0,33 6 360,1 60 0,055 -0,26 6 404,7 60 0,085 0,24	5
6 360,1 60 0,055 -0,26 6 404,7 60 0,085 0,24	
6 404,7 60 0,085 0,24	5
	5
6.429.7 60 0.115 -0.08	5
0 427,7 00 0,113 -0,00	5
6 440,9 60 0,145 0,03	5
6 446,4 60 0,175 0,00	5
6 452,0 60 0,205 0,03	5
6 454,8 60 0,235 0,00	5
6 462,2 60 0,025 0,00	5
6 490,0 60 0,025 -0,29	5
6 542,9 60 -0,005 0,27	5
6 562,4 60 -0,035 -0,08	5
6 576,3 60 -0,065 0,06	5
6 587,4 60 -0,095 -0,05	5
6 595,8 60 -0,125 0,03	5
6 601,4 60 -0,155 0,00	5
6 604,1 60 -0,185 0,00	5
6 611,6 60 0,025 0,00	5
6 636,6 60 0,025 0,27	5
6 686,7 60 0,055 -0,23	5
6 725,7 60 0,085 0,21	5
6 739,6 60 0,115 -0,05	5
6 745,2 60 0,145 0,03	5
6 750,7 60 0,175 0,00	5
6 753,5 60 0,205 0,00	5
6 760,0 60 0,025 0,00	5
6 785,1 60 0,025 -0,26	5
6 835,2 60 -0,005 0,27	5
6 849,1 60 -0,035 -0,05	5
6 857,4 60 -0,065 0,03	5
6 865,8 60 -0,095 -0,02	5
6 871,3 60 -0,125 0,03	5
6 874,1 60 -0,155 0,00	5
6 880,6 60 0,025 0,00	5
6 905,7 60 0,025 0,27	5

6 950,2	60	0,055	-0,205
6 983,6	60	0,085	0,185
6 994,7	60	0,115	-0,025
7 000,3	60	0,145	0,035
7 005,9	60	0,175	0,005
7 008,7	60	0,205	0,005
7 015,2	60	0,025	0,005
7 040,2	60	0,025	-0,265
7 082,0	60	-0,005	0,215
7 093,1	60	-0,035	-0,025
7 101,4	60	-0,065	0,035
7 109,8	60	-0,095	-0,025
7 115,4	60	-0,125	0,035
7 118,1	60	-0,155	0,005
7 124,6	60	0,025	0,005
7 146,9	60	0,025	0,245
7 185,9	60	0,055	-0,175
7 213,7	60	0,085	0,155
7 224,8	60	0,115	-0,025
7 230,4	60	0,145	0,035
7 233,2	60	0,175	0,005
7 238,7	60	0,025	0,005
7 261,0	60	0,025	-0,235
7 297,2	60	-0,005	0,185
7 305,5	60	-0,035	-0,025
7 313,9	60	-0,065	0,035
7 319,5	60	-0,095	0,005
7 325,0	60	-0,125	0,035
7 327,8	60	-0,155	0,005
7 334,3	60	0,025	0,005
7 353,8	60	0,025	0,215
7 392,8	60	0,055	-0,175
7 412,2	60	0,085	0,095
7 420,6	60	0,115	-0,025
7 426,2	60	0,145	0,035
7 428,9	60	0,175	0,005
7 434,5	60	0,025	0,005

7 454,0	60	0,025	-0,205
7 490,2	60	-0,005	0,185
7 498,5	60	-0,035	-0,025
7 506,9	60	-0,065	0,035
7 512,4	60	-0,095	0,005
7 515,2	60	-0,125	0,005
7 520,8	60	0,025	0,005
7 540,3	60	0,025	0,215
7 576,5	60	0,055	-0,175
7 595,9	60	0,085	0,095
7 601,5	60	0,115	0,005
7 607,1	60	0,145	0,035
7 609,9	60	0,175	0,005
7 615,4	60	0,025	0,005
7 634,9	60	0,025	-0,205
7 665,5	60	-0,005	0,155
7 673,9	60	-0,035	-0,025
7 679,4	60	-0,065	0,035
7 685,0	60	-0,095	0,005
7 687,8	60	-0,125	0,005
7 693,4	60	0,025	0,005
7 712,8	60	0,025	0,215
7 749,0	60	0,055	-0,175
7 765,7	60	0,085	0,095
7 771,3	60	0,115	0,005
7 774,1	60	0,145	0,005
7 776,9	60	0,175	0,005
7 782,4	60	0,025	0,005
7 801,9	60	0,025	-0,205
7 832,5	60	-0,005	0,155
7 840,9	60	-0,035	-0,025
7 846,4	60	-0,065	0,035
7 849,2	60	-0,095	0,005
7 852,0	60	-0,125	0,005
7 857,6	60	0,025	0,005
7 877,1	60	0,025	0,215
7 910,5	60	0,055	-0,145

7 924,4	60	0,085	0,065
7 929,9	60	0,115	0,005
7 932,7	60	0,145	0,005
7 937,4	60	0,025	0,005
7 954,1	60	0,025	-0,175
7 984,7	60	-0,005	0,155
7 993,0	60	-0,035	-0,025
7 998,6	60	-0,065	0,035
8 001,4	60	-0,095	0,005
8 004,2	60	-0,125	0,005
8 009,7	60	0,025	0,005
8 026,4	60	0,025	0,185
8 057,1	60	0,055	-0,145
8 068,2	60	0,085	0,065
8 073,8	60	0,115	0,005
8 076,5	60	0,145	0,005
8 081,2	60	0,025	0,005
8 097,9	60	0,025	-0,175
8 122,9	60	-0,005	0,125
8 128,5	60	-0,035	0,005
8 134,1	60	-0,065	0,035
8 136,8	60	-0,095	0,005
8 139,6	60	-0,125	0,005
8 145,2	60	0,025	0,005
8 161,9	60	0,025	0,185
8 192,5	60	0,055	-0,145
8 203,6	60	0,085	0,065
8 209,2	60	0,115	0,005
8 212,0	60	0,145	0,005
8 216,6	60	0,025	0,005
8 233,3	60	0,025	-0,175
8 255,6	60	-0,005	0,125
8 261,2	60	-0,035	0,005
8 266,7	60	-0,065	0,035
8 269,5	60	-0,095	0,005
8 272,3	60	-0,125	0,005
8 277,9	60	0,025	0,005

8 294,6	60	0,025	0,185
8 322,4	60	0,055	-0,115
8 333,5	60	0,085	0,065
8 339,1	60	0,115	0,005
8 341,9	60	0,145	0,005
8 346,5	60	0,025	0,005
8 360,4	60	0,025	-0,145
8 382,7	60	-0,005	0,125
8 388,3	60	-0,035	0,005
8 391,1	60	-0,065	0,005
8 393,8	60	-0,095	0,005
8 398,5	60	0,025	0,005
8 415,2	60	0,025	0,185
8 440,2	60	0,055	-0,115
8 451,4	60	0,085	0,065
8 456,9	60	0,115	0,005
8 460,6	60	0,025	0,005
8 474,6	60	0,025	-0,145
8 494,0	60	-0,005	0,095
8 499,6	60	-0,035	0,005
8 502,4	60	-0,065	0,005
8 505,2	60	-0,095	0,005
8 509,8	60	0,025	0,005
8 523,7	60	0,025	0,155
8 548,8	60	0,055	-0,115
8 557,1	60	0,085	0,035
8 562,7	60	0,115	0,005
8 566,4	60	0,025	0,005
8 580,3	60	0,025	-0,145
8 599,8	60	-0,005	0,095
8 605,4	60	-0,035	0,005
8 608,2	60	-0,065	0,005
8 610,9	60	-0,095	0,005
8 615,6	60	0,025	0,005
8 629,5	60	0,025	0,155
8 654,5	60	0,055	-0,115
8 662,9	60	0,085	0,035

8 665,7	60	0,115	0,005
8 669,4	60	0,025	0,005
8 683,3	60	0,025	-0,145
8 702,8	60	-0,005	0,095
8 708,4	60	-0,035	0,005
8 711,1	60	-0,065	0,005
8 713,9	60	-0,095	0,005
8 718,6	60	0,025	0,005
8 732,5	60	0,025	0,155
8 752,0	60	0,055	-0,085
8 760,3	60	0,085	0,035
8 763,1	60	0,115	0,005
8 766,8	60	0,025	0,005
8 780,7	60	0,025	-0,145
8 797,4	60	-0,005	0,095
8 800,2	60	-0,035	0,005
8 803,0	60	-0,065	0,005
8 806,7	60	0,025	0,005
8 820,6	60	0,025	0,155
8 840,1	60	0,055	-0,085
8 848,5	60	0,085	0,035
8 851,2	60	0,115	0,005
8 854,9	60	0,025	0,005
8 866,1	60	0,025	-0,115
8 882,8	60	-0,005	0,095
8 885,6	60	-0,035	0,005
8 888,3	60	-0,065	0,005
8 892,1	60	0,025	0,005
8 906,0	60	0,025	0,155
8 925,5	60	0,055	-0,085
8 933,8	60	0,085	0,035
8 936,6	60	0,115	0,005
8 940,3	60	0,025	0,005
8 951,4	60	0,025	-0,115
8 968,1	60	-0,005	0,095
8 970,9		0.025	0,005
	60	-0,035	0,003

8 977,4	60	0,025	0,005
8 988,5	60	0,025	0,125
9 008,0	60	0,055	-0,085
9 013,6	60	0,085	0,035
9 016,4	60	0,115	0,005
9 020,1	60	0,025	0,005
9 031,2	60	0,025	-0,115
9 045,1	60	-0,005	0,065
9 047,9	60	-0,035	0,005
9 050,7	60	-0,065	0,005
9 054,4	60	0,025	0,005
9 065,6	60	0,025	0,125
9 085,0	60	0,055	-0,085
9 090,6	60	0,085	0,035
9 093,4	60	0,115	0,005
9 097,1	60	0,025	0,005
9 108,2	60	0,025	-0,115
9 122,1	60	-0,005	0,065
9 124,9	60	-0,035	0,005
9 127,7	60	-0,065	0,005
9 131,4	60	0,025	0,005
9 142,6	60	0,025	0,125
9 162,0	60	0,055	-0,085
9 167,6	60	0,085	0,035
9 170,4	60	0,115	0,005
9 174,1	60	0,025	0,005
9 185,2	60	0,025	-0,115
9 199,2	60	-0,005	0,065
9 201,9	60	-0,035	0,005
9 204,7	60	0,025	0,005
9 215,9	60	0,025	0,125
9 235,3	60	0,055	-0,085
9 240,9	60	0,085	0,035
9 243,7	60	0,025	0,005
9 254,8	60	0,025	-0,115
9 268,7	60	-0,005	0,065
9 271,5	60	-0,035	0,005
_			

9 274,3	60	0,025	0,005
9 282,7	60	0,025	0,095
9 299,4	60	0,055	-0,055
9 304,9	60	0,085	0,035
9 307,7	60	0,025	0,005
9 318,8	60	0,025	-0,115
9 332,8	60	-0,005	0,065
9 335,5	60	-0,035	0,005
9 338,3	60	0,025	0,005
9 346,7	60	0,025	0,095
9 363,4	60	0,055	-0,055
9 368,9	60	0,085	0,035
9 371,7	60	0,025	0,005
9 380,1	60	0,025	-0,085
9 394,0	60	-0,005	0,065
9 396,8	60	-0,035	0,005
9 399,6	60	0,025	0,005
9 407,9	60	0,025	0,095
9 421,8	60	0,055	-0,055
9 427,4	60	0,085	0,035
9 430,2	60	0,025	0,005
9 438,5	60	0,025	-0,085
9 449,7	60	-0,005	0,065
9 452,4	60	-0,035	0,005
9 455,2	60	0,025	0,005
9 463,6	60	0,025	0,095
9 477,5	60	0,055	-0,055
9 483,1	60	0,085	0,035
9 485,8	60	0,025	0,005
9 494,2	60	0,025	-0,085
9 505,3	60	-0,005	0,065
9 508,1	60	-0,035	0,005
9 510,9	60	0,025	0,005
9 519,2	60	0,025	0,095
9 533,2	60	0,055	-0,055
9 538,7	60	0,085	0,035
9 541,5	60	0,025	0,005

9 549,9	60	0,025	-0,085
9 561,0	60	-0,005	0,065
9 563,8	60	-0,035	0,005
9 566,6	60	0,025	0,005
9 574,9	60	0,025	0,095
9 588,8	60	0,055	-0,055
9 594,4	60	0,085	0,035
9 597,2	60	0,025	0,005
9 605,5	60	0,025	-0,085
9 616,7	60	-0,005	0,065
9 619,4	60	-0,035	0,005
9 622,2	60	0,025	0,005
9 630,6	60	0,025	0,095
9 644,5	60	0,055	-0,055
9 650,1	60	0,085	0,035
9 652,8	60	0,025	0,005
9 661,2	60	0,025	-0,085
9 669,5	60	-0,005	0,035
9 672,3	60	-0,035	0,005
9 675,1	60	0,025	0,005
9 683,5	60	0,025	0,095
9 697,4	60	0,055	-0,055
9 700,2	60	0,085	0,005
9 702,9	60	0,025	0,005
9 708,5	60	0,025	-0,055
9 716,9	60	-0,005	0,035
9 719,6	60	-0,035	0,005
9 722,4	60	0,025	0,005
9 730,8	60	0,025	0,095
9 744,7	60	0,055	-0,055
9 747,5	60	0,085	0,005
9 750,3	60	0,025	0,005
9 755,8	60	0,025	-0,055
9 764,2	60	-0,005	0,035
9 767,0	60	-0,035	0,005
9 769,7	60	0,025	0,005
9 778,1	60	0,025	0,095

9 792,0	60	0,055	-0,055
9 794,8	60	0,085	0,005
9 797,6	60	0,025	0,005
9 803,1	60	0,025	-0,055
9 811,5	60	-0,005	0,035
9 814,3	60	-0,035	0,005
9 817,1	60	0,025	0,005
9 825,4	60	0,025	0,095
9 839,3	60	0,055	-0,055
9 842,1	60	0,085	0,005
9 844,9	60	0,025	0,005
9 850,5	60	0,025	-0,055
9 858,8	60	-0,005	0,035
9 861,6	60	-0,035	0,005
9 864,4	60	0,025	0,005
9 869,9	60	0,025	0,065
9 883,9	60	0,055	-0,055
9 886,6	60	0,085	0,005
9 889,4	60	0,025	0,005
9 895,0	60	0,025	-0,055
9 903,3	60	-0,005	0,035
9 906,1	60	-0,035	0,005
9 908,9	60	0,025	0,005
9 914,5	60	0,025	0,065
9 925,6	60	0,055	-0,025
9 928,4	60	0,085	0,005
9 931,2	60	0,025	0,005
9 936,7	60	0,025	-0,055
9 945,1	60	-0,005	0,035
9 947,9	60	-0,035	0,005
9 950,7	60	0,025	0,005
9 956,2	60	0,025	0,065
9 967,4	60	0,055	-0,025
9 970,1	60	0,085	0,005
9 972,9	60	0,025	0,005
9 978,5	60	0,025	-0,055
9 986,8	60	-0,005	0,035

9 989,6	60	-0,035	0,005
9 992,4	60	0,025	0,005
9 998,0	60	0,025	0,065
10 009,1	60	0,055	-0,025
10 011,9	60	0,085	0,005
10 014,7	60	0,025	0,005
10 020,2	60	0,025	-0,055
10 028,6	60	-0,005	0,035
10 030,4	60	0,025	0,005
10 036,0	60	0,025	0,065
10 047,1	60	0,055	-0,025
10 049,9	60	0,085	0,005
10 052,7	60	0,025	0,005
10 058,3	60	0,025	-0,055
10 066,6	60	-0,005	0,035
10 068,5	60	0,025	0,005
10 074,1	60	0,025	0,065
10 085,2	60	0,055	-0,025
10 088,0	60	0,085	0,005
10 090,8	60	0,025	0,005
10 096,3	60	0,025	-0,055
10 104,7	60	-0,005	0,035
10 106,5	60	0,025	0,005
10 112,1	60	0,025	0,065
10 123,2	60	0,055	-0,025
10 126,0	60	0,085	0,005
10 128,8	60	0,025	0,005
10 134,4	60	0,025	-0,055
10 142,7	60	-0,005	0,035
10 144,6	60	0,025	0,005
10 150,1	60	0,025	0,065
10 161,3	60	0,055	-0,025
10 164,0	60	0,085	0,005
10 166,8	60	0,025	0,005
10 172,4	60	0,025	-0,055
10 180,7	60	-0,005	0,035
10 182,6	60	0,025	0,005

10 188,2	60	0,025	0,065
10 196,5	60	0,055	-0,025
10 199,3	60	0,085	0,005
10 202,1	60	0,025	0,005
10 207,7	60	0,025	-0,055
10 216,0	60	-0,005	0,035
10 217,9	60	0,025	0,005
10 223,4	60	0,025	0,065
10 231,8	60	0,055	-0,025
10 234,6	60	0,085	0,005
10 237,3	60	0,025	0,005
10 242,9	60	0,025	-0,055
10 251,3	60	-0,005	0,035
10 253,1	60	0,025	0,005
10 258,7	60	0,025	0,065
10 267,0	60	0,055	-0,025
10 269,8	60	0,085	0,005
10 272,6	60	0,025	0,005
10 278,2	60	0,025	-0,055
10 286,5	60	-0,005	0,035
10 288,4	60	0,025	0,005
10 293,9	60	0,025	0,065
10 302,3	60	0,055	-0,025
10 305,1	60	0,085	0,005
10 307,9	60	0,025	0,005
10 313,4	60	0,025	-0,055
10 321,8	60	-0,005	0,035
10 323,6	60	0,025	0,005
10 329,2	60	0,025	0,065
10 337,5	60	0,055	-0,025
10 340,3	60	0,085	0,005
10 343,1	60	0,025	0,005
10 348,7	60	0,025	-0,055
10 357,0	60	-0,005	0,035
10 358,9	60	0,025	0,005
10 364,4	60	0,025	0,065
10 372,8	60	0,055	-0,025

10 375,6	60	0,085	0,005
10 378,4	60	0,025	0,005
10 383,9	60	0,025	-0,055
10 392,3	60	-0,005	0,035
10 394,1	60	0,025	0,005
10 399,7	60	0,025	0,065
10 408,1	60	0,055	-0,025
10 410,8	60	0,085	0,005
10 413,6	60	0,025	0,005
10 419,2	60	0,025	-0,055
10 427,5	60	-0,005	0,035
10 429,4	60	0,025	0,005
10 435,0	60	0,025	0,065
10 443,3	60	0,055	-0,025
10 446,1	60	0,085	0,005
10 448,9	60	0,025	0,005
10 454,4	60	0,025	-0,055
10 462,8	60	-0,005	0,035
10 464,6	60	0,025	0,005
10 470,2	60	0,025	0,065
10 478,6	60	0,055	-0,025
10 481,3	60	0,085	0,005
10 484,1	60	0,025	0,005
10 489,7	60	0,025	-0,055
10 498,0	60	-0,005	0,035
10 499,9	60	0,025	0,005
10 505,5	60	0,025	0,065
10 513,8	60	0,055	-0,025
10 516,6	60	0,085	0,005
10 519,4	60	0,025	0,005
10 525,0	60	0,025	-0,055
10 533,3	60	-0,005	0,035
10 535,2	60	0,025	0,005
10 540,7	60	0,025	0,065
10 549,1	60	0,055	-0,025
10 551,9	60	0,085	0,005
10 554,6	60	0,025	0,005

10 560,2	60	0,025	-0,055
10 568,6	60	-0,005	0,035
10 570,4	60	0,025	0,005
10 576,0	60	0,025	0,065
10 584,3	60	0,055	-0,025
10 586,2	60	0,025	0,005
10 589,0	60	0,025	-0,025
10 597,3	60	-0,005	0,035
10 599,2	60	0,025	0,005
10 604,7	60	0,025	0,065
10 613,1	60	0,055	-0,025
10 615,0	60	0,025	0,005
10 617,7	60	0,025	-0,025
10 626,1	60	-0,005	0,035
10 627,9	60	0,025	0,005
10 633,5	60	0,025	0,065
10 641,9	60	0,055	-0,025
10 643,7	60	0,025	0,005
10 646,5	60	0,025	-0,025
10 654,8	60	-0,005	0,035
10 656,7	60	0,025	0,005
10 662,3	60	0,025	0,065
10 670,6	60	0,055	-0,025
10 672,5	60	0,025	0,005
10 675,3	60	0,025	-0,025
10 683,6	60	-0,005	0,035
10 685,5	60	0,025	0,005
10 691,0	60	0,025	0,065
10 699,4	60	0,055	-0,025
10 701,2	60	0,025	0,005
10 704,0	60	0,025	-0,025
10 712,4	60	-0,005	0,035
10 714,2	60	0,025	0,005
10 719,8	60	0,025	0,065
10 728,1	60	0,055	-0,025
10 730,0	60	0,025	0,005
10 732,8	60	0,025	-0,025

10 741,1	60	-0,005	0,035
10 743,0	60	0,025	0,005
10 748,6	60	0,025	0,065
10 756,9	60	0,055	-0,025
10 758,8	60	0,025	0,005
10 761,5	60	0,025	-0,025
10 769,9	60	-0,005	0,035
10 771,7	60	0,025	0,005
10 777,3	60	0,025	0,065
10 785,7	60	0,055	-0,025
10 787,5	60	0,025	0,005
10 790,3	60	0,025	-0,025
10 798,7	60	-0,005	0,035
10 800,5	60	0,025	0,005
10 806,1	60	0,025	0,065
10 814,4	60	0,055	-0,025
10 816,3	60	0,025	0,005
10 819,1	60	0,025	-0,025
10 827,4	60	-0,005	0,035
10 829,3	60	0,025	0,005
10 834,8	60	0,025	0,065
10 843,2	60	0,055	-0,025
10 845,0	60	0,025	0,005
10 847,8	60	0,025	-0,025
10 856,2	60	-0,005	0,035
10 858,0	60	0,025	0,005
10 863,6	60	0,025	0,065
10 871,9	60	0,055	-0,025
10 873,8	60	0,025	0,005
10 876,6	60	0,025	-0,025
10 884,9	60	-0,005	0,035
10 886,8	60	0,025	0,005
10 889,6	60	0,025	0,035
10 897,9	60	0,055	-0,025
10 899,8	60	0,025	0,005
10 902,6	60	0,025	-0,025
10 908,1	60	-0,005	0,035

10 910,0	60	0,025	0,005
10 912,8	60	0,025	0,035
10 921,1	60	0,055	-0,025
10 923,0	60	0,025	0,005
10 925,8	60	0,025	-0,025
10 931,3	60	-0,005	0,035
10 933,2	60	0,025	0,005
10 936,0	60	0,025	0,035
10 944,3	60	0,055	-0,025
10 946,2	60	0,025	0,005
10 949,0	60	0,025	-0,025
10 954,5	60	-0,005	0,035
10 956,4	60	0,025	0,005
10 959,2	60	0,025	0,035
10 967,5	60	0,055	-0,025
10 969,4	60	0,025	0,005
10 972,1	60	0,025	-0,025
10 977,7	60	-0,005	0,035
10 979,6	60	0,025	0,005
10 982,4	60	0,025	0,035
10 990,7	60	0,055	-0,025
10 992,6	60	0,025	0,005
10 995,3	60	0,025	-0,025
11 000,9	60	-0,005	0,035
11 002,8	60	0,025	0,005
11 005,5	60	0,025	0,035
11 013,9	60	0,055	-0,025
11 015,8	60	0,025	0,005
11 018,5	60	0,025	-0,025
11 024,1	60	-0,005	0,035
11 026,0	60	0,025	0,005
11 028,7	60	0,025	0,035
11 037,1	60	0,055	-0,025
11 038,9	60	0,025	0,005
11 041,7	60	0,025	-0,025
11 047,3	60	-0,005	0,035
11 049,2	60	0,025	0,005

11 051,9	60	0,025	0,035
11 057,5	60	0,055	0,005
11 059,4	60	0,025	0,005
11 062,1	60	0,025	-0,025
11 067,7	60	-0,005	0,035
11 069,6	60	0,025	0,005
11 072,3	60	0,025	0,035
11 077,9	60	0,055	0,005
11 079,8	60	0,025	0,005
11 082,6	60	0,025	-0,025
11 088,1	60	-0,005	0,035
11 090,0	60	0,025	0,005
11 092,8	60	0,025	0,035
11 098,3	60	0,055	0,005
11 100,2	60	0,025	0,005
11 103,0	60	0,025	-0,025
11 108,5	60	-0,005	0,035
11 110,4	60	0,025	0,005
11 113,2	60	0,025	0,035
11 118,7	60	0,055	0,005
11 120,6	60	0,025	0,005
11 123,4	60	0,025	-0,025
11 128,9	60	-0,005	0,035
11 130,8	60	0,025	0,005
11 133,6	60	0,025	0,035
11 139,1	60	0,055	0,005
11 141,0	60	0,025	0,005
11 143,8	60	0,025	-0,025
11 149,4	60	-0,005	0,035
11 151,2	60	0,025	0,005
11 154,0	60	0,025	0,035
11 159,6	60	0,055	0,005
11 161,4	60	0,025	0,005
11 164,2	60	0,025	-0,025
11 169,8	60	-0,005	0,035
11 171,6	60	0,025	0,005
11 174,4	60	0,025	0,035

11 180,0	60	0,055	0,005
11 181,8	60	0,025	0,005
11 184,6	60	0,025	-0,025
11 187,4	60	-0,005	0,005
11 189,2	60	0,025	0,005
11 192,0	60	0,025	0,035
11 197,6	60	0,055	0,005
11 199,5	60	0,025	0,005
11 202,2	60	0,025	-0,025
11 205,0	60	-0,005	0,005
11 206,9	60	0,025	0,005
11 209,7	60	0,025	0,035
11 215,2	60	0,055	0,005
11 217,1	60	0,025	0,005
11 219,9	60	0,025	-0,025
11 222,6	60	-0,005	0,005
11 224,5	60	0,025	0,005
11 227,3	60	0,025	0,035
11 232,9	60	0,055	0,005
11 234,7	60	0,025	0,005
11 237,5	60	0,025	-0,025
11 240,3	60	-0,005	0,005
11 242,1	60	0,025	0,005
11 244,9	60	0,025	0,035
11 250,5	60	0,055	0,005
11 252,3	60	0,025	0,005
11 255,1	60	0,025	-0,025
11 257,9	60	-0,005	0,005
11 259,8	60	0,025	0,005
11 262,5	60	0,025	0,035
11 268,1	60	0,055	0,005
11 270,0	60	0,025	0,005
11 272,7	60	0,025	-0,025
11 275,5	60	-0,005	0,005
11 277,4	60	0,025	0,005
11 280,2	60	0,025	0,035
11 285,7	60	0,055	0,005

11 287,6 60 0,025 -0,025 11 290,4 60 0,025 -0,025 11 293,2 60 -0,005 0,005 11 295,0 60 0,025 0,005 11 297,8 60 0,025 0,005 11 303,4 60 0,025 0,005 11 308,0 60 0,025 -0,025 11 310,8 60 -0,005 0,005 11 312,6 60 0,025 0,005 11 315,4 60 0,025 0,005 11 322,8 60 0,025 0,005 11 322,8 60 0,025 0,005 11 328,4 60 -0,005 0,005 11 330,3 60 0,025 0,005 11 333,1 60 0,025 0,005 11 340,5 60 0,025 0,005 11 347,9 60 0,025 0,005 11 347,9 60 0,025 0,005 11 360,9				
11 293,2 60 -0,005 0,005 11 295,0 60 0,025 0,005 11 297,8 60 0,025 0,035 11 303,4 60 0,055 0,005 11 305,2 60 0,025 -0,025 11 308,0 60 0,025 -0,025 11 310,8 60 -0,005 0,005 11 312,6 60 0,025 0,005 11 321,0 60 0,055 0,005 11 322,8 60 0,025 0,005 11 328,4 60 -0,005 0,005 11 330,3 60 0,025 0,005 11 333,1 60 0,025 0,005 11 340,5 60 0,025 0,005 11 340,5 60 0,025 0,005 11 347,9 60 0,025 0,005 11 350,7 60 0,025 0,005 11 360,9 60 0,025 0,005 11 363,7	11 287,6	60	0,025	0,005
11 295,0 60 0,025 0,005 11 297,8 60 0,025 0,035 11 303,4 60 0,025 0,005 11 305,2 60 0,025 0,005 11 308,0 60 0,025 -0,025 11 310,8 60 -0,005 0,005 11 312,6 60 0,025 0,005 11 321,0 60 0,025 0,005 11 322,8 60 0,025 0,005 11 328,4 60 -0,005 0,005 11 330,3 60 0,025 0,005 11 333,1 60 0,025 0,005 11 340,5 60 0,025 0,005 11 340,5 60 0,025 0,005 11 347,9 60 0,025 0,005 11 356,2 60 0,025 0,005 11 356,2 60 0,025 0,005 11 360,9 60 0,025 0,005 11 363,7	11 290,4	60	0,025	-0,025
11 297,8 60 0,025 0,035 11 303,4 60 0,055 0,005 11 305,2 60 0,025 0,005 11 308,0 60 0,025 -0,025 11 310,8 60 -0,005 0,005 11 312,6 60 0,025 0,005 11 315,4 60 0,025 0,005 11 321,0 60 0,025 0,005 11 322,8 60 0,025 0,005 11 325,6 60 0,025 0,005 11 328,4 60 -0,005 0,005 11 330,3 60 0,025 0,005 11 333,1 60 0,025 0,005 11 340,5 60 0,025 0,005 11 340,5 60 0,025 0,005 11 347,9 60 0,025 0,005 11 350,7 60 0,025 0,005 11 363,7 60 0,025 0,005 11 363,7	11 293,2	60	-0,005	0,005
11 303,4 60 0,055 0,005 11 305,2 60 0,025 0,005 11 308,0 60 0,025 -0,025 11 310,8 60 -0,005 0,005 11 312,6 60 0,025 0,005 11 315,4 60 0,025 0,005 11 321,0 60 0,025 0,005 11 322,8 60 0,025 -0,025 11 328,4 60 -0,005 0,005 11 330,3 60 0,025 0,005 11 333,1 60 0,025 0,005 11 340,5 60 0,025 0,005 11 343,3 60 0,025 0,005 11 347,9 60 0,025 0,005 11 350,7 60 0,025 0,005 11 358,1 60 0,025 0,005 11 363,7 60 0,025 0,005 11 363,7 60 0,025 0,005 11 368,3	11 295,0	60	0,025	0,005
11 305,2 60 0,025 -0,005 11 308,0 60 0,025 -0,025 11 310,8 60 -0,005 0,005 11 312,6 60 0,025 0,005 11 315,4 60 0,025 0,005 11 321,0 60 0,025 0,005 11 322,8 60 0,025 -0,025 11 328,4 60 -0,005 0,005 11 330,3 60 0,025 0,005 11 333,1 60 0,025 0,005 11 338,6 60 0,025 0,005 11 340,5 60 0,025 0,005 11 343,3 60 0,025 0,005 11 347,9 60 0,025 0,005 11 350,7 60 0,025 0,005 11 358,1 60 0,025 0,005 11 363,7 60 -0,025 0,005 11 368,3 60 0,025 0,005 11 371,1	11 297,8	60	0,025	0,035
11 308,0 60 0,025 -0,025 11 310,8 60 -0,005 0,005 11 312,6 60 0,025 0,005 11 315,4 60 0,025 0,035 11 321,0 60 0,055 0,005 11 322,8 60 0,025 0,005 11 328,4 60 -0,005 0,005 11 330,3 60 0,025 0,005 11 333,1 60 0,025 0,005 11 340,5 60 0,025 0,005 11 340,5 60 0,025 0,005 11 347,9 60 0,025 0,005 11 350,7 60 0,025 0,005 11 356,2 60 0,025 0,005 11 363,7 60 0,025 0,005 11 363,7 60 -0,005 0,005 11 368,3 60 0,025 0,005 11 371,1 60 0,025 0,005 11 378,5	11 303,4	60	0,055	0,005
11 310,8 60 -0,005 0,005 11 312,6 60 0,025 0,005 11 315,4 60 0,025 0,035 11 321,0 60 0,055 0,005 11 322,8 60 0,025 -0,025 11 328,4 60 -0,005 0,005 11 330,3 60 0,025 0,005 11 333,1 60 0,025 0,005 11 340,5 60 0,025 0,005 11 340,5 60 0,025 0,005 11 343,3 60 0,025 0,005 11 347,9 60 0,025 0,005 11 350,7 60 0,025 0,005 11 358,1 60 0,025 0,005 11 360,9 60 0,025 0,005 11 363,7 60 -0,025 0,005 11 368,3 60 0,025 0,005 11 371,1 60 0,025 0,005 11 375,7	11 305,2	60	0,025	0,005
11 312,6 60 0,025 0,005 11 315,4 60 0,025 0,035 11 321,0 60 0,055 0,005 11 322,8 60 0,025 0,005 11 325,6 60 0,025 -0,025 11 328,4 60 -0,005 0,005 11 330,3 60 0,025 0,005 11 338,6 60 0,025 0,005 11 340,5 60 0,025 0,005 11 343,3 60 0,025 0,005 11 346,0 60 -0,005 0,005 11 347,9 60 0,025 0,005 11 356,2 60 0,025 0,005 11 358,1 60 0,025 0,005 11 363,7 60 0,025 0,005 11 363,7 60 -0,005 0,005 11 368,3 60 0,025 0,005 11 371,1 60 0,025 0,005 11 372,9	11 308,0	60	0,025	-0,025
11 315,4 60 0,025 0,035 11 321,0 60 0,055 0,005 11 322,8 60 0,025 0,005 11 325,6 60 0,025 -0,025 11 328,4 60 -0,005 0,005 11 330,3 60 0,025 0,005 11 333,1 60 0,025 0,005 11 340,5 60 0,025 0,005 11 340,5 60 0,025 0,005 11 346,0 60 -0,005 0,005 11 347,9 60 0,025 0,005 11 350,7 60 0,025 0,005 11 356,2 60 0,025 0,005 11 360,9 60 0,025 0,025 11 363,7 60 -0,005 0,005 11 368,3 60 0,025 0,005 11 371,1 60 0,025 0,005 11 372,9 60 0,025 0,005 11 378,5	11 310,8	60	-0,005	0,005
11 321,0 60 0,055 0,005 11 322,8 60 0,025 0,005 11 325,6 60 0,025 -0,025 11 328,4 60 -0,005 0,005 11 330,3 60 0,025 0,005 11 333,1 60 0,025 0,035 11 340,5 60 0,025 0,005 11 343,3 60 0,025 -0,025 11 346,0 60 -0,005 0,005 11 347,9 60 0,025 0,035 11 350,7 60 0,025 0,005 11 358,1 60 0,025 0,005 11 360,9 60 0,025 0,005 11 363,7 60 -0,005 0,005 11 368,3 60 0,025 0,005 11 371,1 60 0,025 0,005 11 372,9 60 0,025 0,005 11 378,5 60 -0,005 0,005 11 380,4	11 312,6	60	0,025	0,005
11 322,8 60 0,025 0,005 11 325,6 60 0,025 -0,025 11 328,4 60 -0,005 0,005 11 330,3 60 0,025 0,005 11 333,1 60 0,025 0,035 11 340,5 60 0,025 0,005 11 343,3 60 0,025 -0,025 11 346,0 60 -0,005 0,005 11 347,9 60 0,025 0,005 11 350,7 60 0,025 0,005 11 358,1 60 0,025 0,005 11 360,9 60 0,025 0,005 11 363,7 60 -0,005 0,005 11 363,7 60 -0,025 0,005 11 368,3 60 0,025 0,005 11 371,1 60 0,025 0,005 11 372,9 60 0,025 0,005 11 378,5 60 -0,005 0,005 11 380,4	11 315,4	60	0,025	0,035
11 325,6 60 0,025 -0,025 11 328,4 60 -0,005 0,005 11 330,3 60 0,025 0,005 11 333,1 60 0,025 0,035 11 338,6 60 0,025 0,005 11 340,5 60 0,025 0,005 11 343,3 60 0,025 -0,025 11 346,0 60 -0,005 0,005 11 347,9 60 0,025 0,005 11 350,7 60 0,025 0,005 11 358,1 60 0,025 0,005 11 360,9 60 0,025 0,025 11 363,7 60 -0,005 0,005 11 368,3 60 0,025 0,005 11 371,1 60 0,025 0,005 11 372,9 60 0,025 0,005 11 378,5 60 -0,005 0,005 11 380,4 60 0,025 0,005 11 383,2	11 321,0	60	0,055	0,005
11 328,4 60 -0,005 0,005 11 330,3 60 0,025 0,005 11 333,1 60 0,025 0,035 11 338,6 60 0,055 0,005 11 340,5 60 0,025 0,005 11 343,3 60 0,025 -0,025 11 347,9 60 0,025 0,005 11 350,7 60 0,025 0,005 11 356,2 60 0,055 0,005 11 360,9 60 0,025 0,005 11 363,7 60 -0,005 0,005 11 368,3 60 0,025 0,005 11 371,1 60 0,025 0,005 11 372,9 60 0,025 0,005 11 378,5 60 -0,005 0,005 11 380,4 60 0,025 0,005 11 385,9 60 0,055 0,005	11 322,8	60	0,025	0,005
11 330,3 60 0,025 0,005 11 333,1 60 0,025 0,035 11 338,6 60 0,055 0,005 11 340,5 60 0,025 0,005 11 343,3 60 0,025 -0,025 11 346,0 60 -0,005 0,005 11 347,9 60 0,025 0,005 11 350,7 60 0,025 0,005 11 356,2 60 0,055 0,005 11 360,9 60 0,025 0,005 11 363,7 60 -0,005 0,005 11 368,3 60 0,025 0,005 11 371,1 60 0,055 0,005 11 372,9 60 0,025 0,005 11 378,5 60 -0,005 0,005 11 380,4 60 0,025 0,005 11 385,9 60 0,055 0,005	11 325,6	60	0,025	-0,025
11 333,1 60 0,025 0,035 11 338,6 60 0,055 0,005 11 340,5 60 0,025 0,005 11 343,3 60 0,025 -0,025 11 346,0 60 -0,005 0,005 11 347,9 60 0,025 0,005 11 350,7 60 0,025 0,035 11 358,1 60 0,025 0,005 11 360,9 60 0,025 0,005 11 363,7 60 -0,005 0,005 11 368,3 60 0,025 0,005 11 371,1 60 0,025 0,005 11 372,9 60 0,025 0,005 11 378,5 60 -0,005 0,005 11 380,4 60 0,025 0,005 11 383,2 60 0,055 0,005 11 385,9 60 0,055 0,005	11 328,4	60	-0,005	0,005
11 338,6 60 0,055 0,005 11 340,5 60 0,025 0,005 11 343,3 60 0,025 -0,025 11 346,0 60 -0,005 0,005 11 347,9 60 0,025 0,005 11 350,7 60 0,025 0,035 11 358,1 60 0,025 0,005 11 360,9 60 0,025 0,005 11 363,7 60 -0,005 0,005 11 365,5 60 0,025 0,005 11 368,3 60 0,025 0,035 11 371,1 60 0,055 0,005 11 372,9 60 0,025 0,005 11 378,5 60 -0,005 0,005 11 380,4 60 0,025 0,005 11 383,2 60 0,055 0,005 11 385,9 60 0,055 0,005	11 330,3	60	0,025	0,005
11 340,5 60 0,025 0,005 11 343,3 60 0,025 -0,025 11 346,0 60 -0,005 0,005 11 347,9 60 0,025 0,005 11 350,7 60 0,025 0,035 11 356,2 60 0,055 0,005 11 360,9 60 0,025 0,005 11 363,7 60 -0,005 0,005 11 365,5 60 0,025 0,005 11 368,3 60 0,025 0,035 11 371,1 60 0,055 0,005 11 372,9 60 0,025 0,005 11 378,5 60 -0,005 0,005 11 380,4 60 0,025 0,005 11 383,2 60 0,055 0,005 11 385,9 60 0,055 0,005	11 333,1	60	0,025	0,035
11 343,3 60 0,025 -0,025 11 346,0 60 -0,005 0,005 11 347,9 60 0,025 0,005 11 350,7 60 0,025 0,035 11 356,2 60 0,055 0,005 11 358,1 60 0,025 0,005 11 360,9 60 0,025 -0,025 11 363,7 60 -0,005 0,005 11 368,3 60 0,025 0,035 11 371,1 60 0,055 0,005 11 372,9 60 0,025 0,005 11 378,5 60 -0,005 0,005 11 380,4 60 0,025 0,005 11 383,2 60 0,025 0,035 11 385,9 60 0,055 0,005	11 338,6	60	0,055	0,005
11 346,0 60 -0,005 0,005 11 347,9 60 0,025 0,005 11 350,7 60 0,025 0,035 11 356,2 60 0,055 0,005 11 358,1 60 0,025 0,005 11 360,9 60 0,025 -0,025 11 363,7 60 -0,005 0,005 11 368,3 60 0,025 0,005 11 371,1 60 0,055 0,005 11 372,9 60 0,025 0,005 11 378,5 60 -0,005 0,005 11 380,4 60 0,025 0,005 11 383,2 60 0,025 0,035 11 385,9 60 0,055 0,005	11 340,5	60	0,025	0,005
11 347,9 60 0,025 0,005 11 350,7 60 0,025 0,035 11 356,2 60 0,055 0,005 11 358,1 60 0,025 0,005 11 360,9 60 0,025 -0,025 11 363,7 60 -0,005 0,005 11 365,5 60 0,025 0,005 11 371,1 60 0,055 0,005 11 372,9 60 0,025 0,005 11 375,7 60 0,025 -0,025 11 378,5 60 -0,005 0,005 11 380,4 60 0,025 0,005 11 383,2 60 0,055 0,005 11 385,9 60 0,055 0,005	11 343,3	60	0,025	-0,025
11 350,7 60 0,025 0,035 11 356,2 60 0,055 0,005 11 358,1 60 0,025 0,005 11 360,9 60 0,025 -0,025 11 363,7 60 -0,005 0,005 11 365,5 60 0,025 0,005 11 368,3 60 0,025 0,035 11 371,1 60 0,055 0,005 11 372,9 60 0,025 0,005 11 378,5 60 -0,005 0,005 11 380,4 60 0,025 0,005 11 383,2 60 0,025 0,035 11 385,9 60 0,055 0,005	11 346,0	60	-0,005	0,005
11 356,2 60 0,055 0,005 11 358,1 60 0,025 0,005 11 360,9 60 0,025 -0,025 11 363,7 60 -0,005 0,005 11 365,5 60 0,025 0,005 11 368,3 60 0,025 0,035 11 371,1 60 0,055 0,005 11 372,9 60 0,025 0,005 11 378,7 60 0,025 -0,025 11 380,4 60 0,025 0,005 11 383,2 60 0,025 0,035 11 385,9 60 0,055 0,005	11 347,9	60	0,025	0,005
11 358,1 60 0,025 0,005 11 360,9 60 0,025 -0,025 11 363,7 60 -0,005 0,005 11 365,5 60 0,025 0,005 11 368,3 60 0,025 0,035 11 371,1 60 0,055 0,005 11 372,9 60 0,025 0,005 11 378,7 60 0,025 -0,025 11 378,5 60 -0,005 0,005 11 380,4 60 0,025 0,035 11 383,2 60 0,025 0,035 11 385,9 60 0,055 0,005	11 350,7	60	0,025	0,035
11 360,9 60 0,025 -0,025 11 363,7 60 -0,005 0,005 11 365,5 60 0,025 0,005 11 368,3 60 0,025 0,035 11 371,1 60 0,055 0,005 11 372,9 60 0,025 0,005 11 378,7 60 0,025 -0,025 11 378,5 60 -0,005 0,005 11 380,4 60 0,025 0,035 11 383,2 60 0,025 0,035 11 385,9 60 0,055 0,005	11 356,2	60	0,055	0,005
11 363,7 60 -0,005 0,005 11 365,5 60 0,025 0,005 11 368,3 60 0,025 0,035 11 371,1 60 0,055 0,005 11 372,9 60 0,025 0,005 11 375,7 60 0,025 -0,025 11 378,5 60 -0,005 0,005 11 380,4 60 0,025 0,005 11 383,2 60 0,025 0,035 11 385,9 60 0,055 0,005	11 358,1	60	0,025	0,005
11 365,5 60 0,025 0,005 11 368,3 60 0,025 0,035 11 371,1 60 0,055 0,005 11 372,9 60 0,025 0,005 11 375,7 60 0,025 -0,025 11 378,5 60 -0,005 0,005 11 380,4 60 0,025 0,005 11 383,2 60 0,025 0,035 11 385,9 60 0,055 0,005	11 360,9	60	0,025	-0,025
11 368,3 60 0,025 0,035 11 371,1 60 0,055 0,005 11 372,9 60 0,025 0,005 11 375,7 60 0,025 -0,025 11 378,5 60 -0,005 0,005 11 380,4 60 0,025 0,005 11 383,2 60 0,025 0,035 11 385,9 60 0,055 0,005	11 363,7	60	-0,005	0,005
11 371,1 60 0,055 0,005 11 372,9 60 0,025 0,005 11 375,7 60 0,025 -0,025 11 378,5 60 -0,005 0,005 11 380,4 60 0,025 0,005 11 383,2 60 0,025 0,035 11 385,9 60 0,055 0,005	11 365,5	60	0,025	0,005
11 372,9 60 0,025 0,005 11 375,7 60 0,025 -0,025 11 378,5 60 -0,005 0,005 11 380,4 60 0,025 0,005 11 383,2 60 0,025 0,035 11 385,9 60 0,055 0,005	11 368,3	60	0,025	0,035
11 375,7 60 0,025 -0,025 11 378,5 60 -0,005 0,005 11 380,4 60 0,025 0,005 11 383,2 60 0,025 0,035 11 385,9 60 0,055 0,005	11 371,1	60	0,055	0,005
11 378,5 60 -0,005 0,005 11 380,4 60 0,025 0,005 11 383,2 60 0,025 0,035 11 385,9 60 0,055 0,005	11 372,9	60	0,025	0,005
11 380,4 60 0,025 0,005 11 383,2 60 0,025 0,035 11 385,9 60 0,055 0,005	11 375,7	60	0,025	-0,025
11 383,2 60 0,025 0,035 11 385,9 60 0,055 0,005	11 378,5	60	-0,005	0,005
11 385,9 60 0,055 0,005	11 380,4	60	0,025	0,005
	11 383,2	60	0,025	0,035
11 387,8 60 0,025 0,005	11 385,9	60	0,055	0,005
	11 387,8	60	0,025	0,005

11 390,6	60	0,025	-0,025
11 393,4	60	-0,005	0,005
11 395,2	60	0,025	0,005
11 398,0	60	0,025	0,035
11 400,8	60	0,055	0,005
11 402,6	60	0,025	0,005
11 405,4	60	0,025	-0,025
11 408,2	60	-0,005	0,005
11 410,1	60	0,025	0,005
11 412,8	60	0,025	0,035
11 415,6	60	0,055	0,005
11 417,5	60	0,025	0,005
11 420,3	60	0,025	-0,025
11 423,0	60	-0,005	0,005
11 424,9	60	0,025	0,005
11 427,7	60	0,025	0,035
11 430,5	60	0,055	0,005
11 432,3	60	0,025	0,005
11 435,1	60	0,025	-0,025
11 437,9	60	-0,005	0,005
11 439,7	60	0,025	0,005
11 442,5	60	0,025	0,035
11 445,3	60	0,055	0,005
11 447,2	60	0,025	0,005
11 450,0	60	0,025	-0,025
11 452,7	60	-0,005	0,005
11 454,6	60	0,025	0,005
11 457,4	60	0,025	0,035
11 460,2	60	0,055	0,005
11 462,0	60	0,025	0,005
11 464,8	60	0,025	-0,025
11 467,6	60	-0,005	0,005
11 469,4	60	0,025	0,005
11 472,2	60	0,025	0,035
11 475,0	60	0,055	0,005
11 476,9	60	0,025	0,005
		-,	-,

11 482,4	60	-0,005	0,005
11 484,3	60	0,025	0,005
11 487,1	60	0,025	0,035
11 489,8	60	0,055	0,005
11 491,7	60	0,025	0,005
11 494,5	60	0,025	-0,025
11 497,3	60	-0,005	0,005
11 499,1	60	0,025	0,005
11 501,9	60	0,025	0,035
11 504,7	60	0,055	0,005
11 506,6	60	0,025	0,005
11 509,3	60	0,025	-0,025
11 512,1	60	-0,005	0,005
11 514,0	60	0,025	0,005
11 516,8	60	0,025	0,035
11 519,5	60	0,055	0,005
11 521,4	60	0,025	0,005
11 524,2	60	0,025	-0,025
11 527,0	60	-0,005	0,005
11 528,8	60	0,025	0,005
11 531,6	60	0,025	0,035
11 534,4	60	0,055	0,005
11 536,2	60	0,025	0,005
11 539,0	60	0,025	-0,025
11 541,8	60	-0,005	0,005
11 543,7	60	0,025	0,005
11 546,4	60	0,025	0,035
11 549,2	60	0,055	0,005
11 551,1	60	0,025	0,005
11 553,9	60	0,025	-0,025
11 556,7	60	-0,005	0,005
11 558,5	60	0,025	0,005
11 561,3	60	0,025	0,035
11 564,1	60	0,055	0,005
11 565,9	60	0,025	0,005
11 568,7	60	0,025	-0,025
11 571,5	60	-0,005	0,005

11 573,4	60	0,025	0,005
11 576,1	60	0,025	0,035
11 578,9	60	0,055	0,005
11 580,8	60	0,025	0,005
11 583,6	60	0,025	-0,025
11 586,3	60	-0,005	0,005
11 588,2	60	0,025	0,005
11 591,0	60	0,025	0,035
11 593,8	60	0,055	0,005
11 595,6	60	0,025	0,005
11 598,4	60	0,025	-0,025
11 601,2	60	-0,005	0,005
11 603,0	60	0,025	0,005
11 605,8	60	0,025	0,035
11 608,6	60	0,055	0,005
11 610,5	60	0,025	0,005
11 613,2	60	0,025	-0,025
11 616,0	60	-0,005	0,005
11 617,9	60	0,025	0,005
11 620,7	60	0,025	0,035
11 623,5	60	0,055	0,005
11 625,3	60	0,025	0,005
11 628,1	60	0,025	-0,025
11 630,9	60	-0,005	0,005
11 632,7	60	0,025	0,005
11 635,5	60	0,025	0,035
11 638,3	60	0,055	0,005
11 640,2	60	0,025	0,005
11 642,9	60	0,025	-0,025
11 645,7	60	-0,005	0,005
11 647,6	60	0,025	0,005
11 650,4	60	0,025	0,035
11 653,1	60	0,055	0,005
11 655,0	60	0,025	0,005
11 657,8	60	0,025	-0,025
11 660,6	60	-0,005	0,005
11 662,4	60	0,025	0,005

11 665,2	60	0,025	0,035
11 668,0	60	0,055	0,005
11 669,8	60	0,025	0,005
11 672,6	60	0,025	-0,025
11 675,4	60	-0,005	0,005
11 677,3	60	0,025	0,005
11 680,0	60	0,025	0,035
11 682,8	60	0,055	0,005
11 684,7	60	0,025	0,005
11 687,5	60	0,025	-0,025
11 690,3	60	-0,005	0,005
11 692,1	60	0,025	0,005
11 694,9	60	0,025	0,035
11 697,7	60	0,055	0,005
11 699,5	60	0,025	0,005
11 702,3	60	0,025	-0,025
11 705,1	60	-0,005	0,005
11 707,0	60	0,025	0,005
11 709,7	60	0,025	0,035
11 712,5	60	0,055	0,005
11 714,4	60	0,025	0,005
11 717,2	60	0,025	-0,025
11 719,9	60	-0,005	0,005
11 721,8	60	0,025	0,005
11 724,6	60	0,025	0,035
11 727,4	60	0,055	0,005
11 729,2	60	0,025	0,005
11 732,0	60	0,025	-0,025
11 734,8	60	-0,005	0,005
11 736,6	60	0,025	0,005
11 739,4	60	0,025	0,035
11 742,2	60	0,055	0,005
11 744,1	60	0,025	0,005
11 746,8	60	0,025	-0,025
11 749,6	60	-0,005	0,005
11 751,5	60	0,025	0,005
11 754,3	60	0,025	0,035

11 757,1	60	0,055	0,005
11 758,9	60	0,025	0,005
11 761,7	60	0,025	-0,025
11 764,5	60	-0,005	0,005
11 766,3	60	0,025	0,005
11 769,1	60	0,025	0,035
11 771,9	60	0,055	0,005
11 773,8	60	0,025	0,005
11 776,5	60	0,025	-0,025
11 779,3	60	-0,005	0,005
11 781,2	60	0,025	0,005
11 784,0	60	0,025	0,035
11 786,7	60	0,055	0,005
11 788,6	60	0,025	0,005
11 791,4	60	0,025	-0,025
11 794,2	60	-0,005	0,005
11 796,0	60	0,025	0,005
11 798,8	60	0,025	0,035
11 801,6	60	0,055	0,005
11 803,4	60	0,025	0,005
11 806,2	60	0,025	-0,025
11 809,0	60	-0,005	0,005
11 810,9	60	0,025	0,005
11 813,6	60	0,025	0,035
11 816,4	60	0,055	0,005
11 818,3	60	0,025	0,005
11 821,1	60	0,025	-0,025
11 823,9	60	-0,005	0,005
11 825,7	60	0,025	0,005
11 828,5	60	0,025	0,035
11 831,3	60	0,055	0,005
11 833,1	60	0,025	0,005
11 835,9	60	0,025	-0,025
11 838,7	60	-0,005	0,005
11 840,6	60	0,025	0,005
11 843,3	60	0,025	0,035
11 846,1	60	0,055	0,005

11 848,0	60	0,025	0,005
11 850,8	60	0,025	-0,025
11 853,5	60	-0,005	0,005
11 855,4	60	0,025	0,005
11 858,2	60	0,025	0,035
11 861,0	60	0,055	0,005
11 862,8	60	0,025	0,005
11 865,6	60	0,025	-0,025
11 868,4	60	-0,005	0,005
11 870,2	60	0,025	0,005
11 873,0	60	0,025	0,035
11 875,8	60	0,055	0,005
11 877,7	60	0,025	0,005
11 883,2	60	0,025	0,005
11 886,0	60	-0,005	0,005
11 887,9	60	0,025	0,005
11 890,7	60	0,025	0,035
11 893,4	60	0,055	0,005
11 895,3	60	0,025	0,005
11 900,9	60	0,025	0,005
11 903,6	60	-0,005	0,005
11 905,5	60	0,025	0,005
11 908,3	60	0,025	0,035
11 911,1	60	0,055	0,005
11 912,9	60	0,025	0,005
11 918,5	60	0,025	0,005
11 921,3	60	-0,005	0,005
11 923,1	60	0,025	0,005
11 925,9	60	0,025	0,035
11 928,7	60	0,055	0,005
11 930,5	60	0,025	0,005
11 936,1	60	0,025	0,005
11 938,9	60	-0,005	0,005
11 940,8	60	0,025	0,005
11 943,5	60	0,025	0,035
11 946,3	60	0,055	0,005
11 948,2	60	0,025	0,005

11 953,7	60	0,025	0,005
11 956,5	60	-0,005	0,005
11 958,4	60	0,025	0,005
11 961,2	60	0,025	0,035
11 963,9	60	0,055	0,005
11 965,8	60	0,025	0,005
11 971,4	60	0,025	0,005
11 974,2	60	-0,005	0,005
11 976,0	60	0,025	0,005
11 978,8	60	0,025	0,035
11 981,6	60	0,055	0,005
11 983,4	60	0,025	0,005
11 989,0	60	0,025	0,005
11 991,8	60	-0,005	0,005
11 993,6	60	0,025	0,005
11 996,4	60	0,025	0,035
11 999,2	60	0,055	0,005
12 001,1	60	0,025	0,005
12 006,6	60	0,025	0,005
12 009,4	60	-0,005	0,005
12 011,3	60	0,025	0,005
12 014,0	60	0,025	0,035
12 016,8	60	0,055	0,005
12 018,7	60	0,025	0,005
12 024,3	60	0,025	0,005
12 027,0	60	-0,005	0,005
12 028,9	60	0,025	0,005
12 031,7	60	0,025	0,035
12 034,5	60	0,055	0,005
12 036,3	60	0,025	0,005
12 041,9	60	0,025	0,005
12 044,7	60	-0,005	0,005
12 046,5	60	0,025	0,005
12 049,3	60	0,025	0,035
12 052,1	60	0,055	0,005
12 053,9	60	0,025	0,005

12 062,3 60 -0,005 0,005 12 064,1 60 0,025 0,005 12 066,9 60 0,025 0,005 12 069,7 60 0,055 0,005 12 071,6 60 0,025 0,005 12 077,1 60 0,025 0,005 12 081,8 60 0,025 0,005 12 084,6 60 0,025 0,005 12 087,3 60 0,025 0,005 12 089,2 60 0,025 0,005 12 094,8 60 0,025 0,005 12 097,5 60 -0,005 0,005 12 105,0 60 0,025 0,005 12 105,0 60 0,025 0,005 12 112,4 60 0,025 0,005 12 117,0 60 0,025 0,005 12 119,8 60 0,025 0,005 12 124,5 60 0,025 0,005 12 132,8 <				
12 066,9 60 0,025 0,035 12 069,7 60 0,055 0,005 12 077,1 60 0,025 0,005 12 079,9 60 -0,005 0,005 12 081,8 60 0,025 0,005 12 084,6 60 0,025 0,005 12 087,3 60 0,025 0,005 12 094,8 60 0,025 0,005 12 097,5 60 -0,005 0,005 12 102,2 60 0,025 0,005 12 105,0 60 0,025 0,005 12 106,8 60 0,025 0,005 12 115,2 60 -0,005 0,005 12 117,0 60 0,025 0,005 12 119,8 60 0,025 0,005 12 122,6 60 0,025 0,005 12 130,0 60 0,025 0,005 12 134,7 60 0,025 0,005 12 134,7	12 062,3	60	-0,005	0,005
12 069,7 60 0,055 0,005 12 071,6 60 0,025 0,005 12 077,1 60 0,025 0,005 12 079,9 60 -0,005 0,005 12 081,8 60 0,025 0,005 12 084,6 60 0,025 0,005 12 087,3 60 0,025 0,005 12 094,8 60 0,025 0,005 12 097,5 60 -0,005 0,005 12 102,2 60 0,025 0,005 12 105,0 60 0,025 0,005 12 106,8 60 0,025 0,005 12 112,4 60 0,025 0,005 12 117,0 60 0,025 0,005 12 117,0 60 0,025 0,005 12 119,8 60 0,025 0,005 12 130,0 60 0,025 0,005 12 130,0 60 0,025 0,005 12 134,7 <	12 064,1	60	0,025	0,005
12 071,6 60 0,025 0,005 12 077,1 60 0,025 0,005 12 079,9 60 -0,005 0,005 12 081,8 60 0,025 0,005 12 084,6 60 0,025 0,005 12 087,3 60 0,025 0,005 12 094,8 60 0,025 0,005 12 097,5 60 -0,005 0,005 12 102,2 60 0,025 0,005 12 105,0 60 0,025 0,005 12 105,0 60 0,025 0,005 12 105,0 60 0,025 0,005 12 112,4 60 0,025 0,005 12 117,0 60 0,025 0,005 12 117,0 60 0,025 0,005 12 122,6 60 0,025 0,005 12 130,0 60 0,025 0,005 12 132,8 60 -0,005 0,005 12 137,4	12 066,9	60	0,025	0,035
12 077,1 60 0,025 0,005 12 079,9 60 -0,005 0,005 12 081,8 60 0,025 0,005 12 084,6 60 0,025 0,035 12 087,3 60 0,055 0,005 12 094,8 60 0,025 0,005 12 097,5 60 -0,005 0,005 12 102,2 60 0,025 0,005 12 105,0 60 0,025 0,005 12 106,8 60 0,025 0,005 12 112,4 60 0,025 0,005 12 117,0 60 0,025 0,005 12 117,0 60 0,025 0,005 12 117,0 60 0,025 0,005 12 117,0 60 0,025 0,005 12 122,6 60 0,025 0,005 12 130,0 60 0,025 0,005 12 132,8 60 -0,005 0,005 12 134,7	12 069,7	60	0,055	0,005
12 079,9 60 -0,005 0,005 12 081,8 60 0,025 0,005 12 084,6 60 0,025 0,035 12 087,3 60 0,055 0,005 12 089,2 60 0,025 0,005 12 094,8 60 -0,005 0,005 12 097,5 60 -0,005 0,005 12 102,2 60 0,025 0,005 12 105,0 60 0,055 0,005 12 106,8 60 0,025 0,005 12 115,2 60 -0,005 0,005 12 117,0 60 0,025 0,005 12 117,0 60 0,025 0,005 12 119,8 60 0,025 0,005 12 122,6 60 0,025 0,005 12 130,0 60 0,025 0,005 12 130,0 60 0,025 0,005 12 137,4 60 0,025 0,005 12 137,4	12 071,6	60	0,025	0,005
12 081,8 60 0,025 0,005 12 084,6 60 0,025 0,035 12 087,3 60 0,055 0,005 12 089,2 60 0,025 0,005 12 094,8 60 0,025 0,005 12 097,5 60 -0,005 0,005 12 102,2 60 0,025 0,035 12 105,0 60 0,025 0,005 12 106,8 60 0,025 0,005 12 112,4 60 0,025 0,005 12 117,0 60 0,025 0,005 12 119,8 60 0,025 0,005 12 119,8 60 0,025 0,005 12 122,6 60 0,025 0,005 12 130,0 60 0,025 0,005 12 130,0 60 0,025 0,005 12 134,7 60 0,025 0,005 12 137,4 60 0,025 0,005 12 142,1 <t< td=""><td>12 077,1</td><td>60</td><td>0,025</td><td>0,005</td></t<>	12 077,1	60	0,025	0,005
12 084,6 60 0,025 0,035 12 087,3 60 0,055 0,005 12 089,2 60 0,025 0,005 12 094,8 60 0,025 0,005 12 097,5 60 -0,005 0,005 12 102,2 60 0,025 0,005 12 105,0 60 0,055 0,005 12 106,8 60 0,025 0,005 12 112,4 60 0,025 0,005 12 115,2 60 -0,005 0,005 12 117,0 60 0,025 0,005 12 119,8 60 0,025 0,005 12 119,8 60 0,025 0,005 12 122,6 60 0,025 0,005 12 130,0 60 0,025 0,005 12 130,0 60 0,025 0,005 12 132,8 60 -0,005 0,005 12 137,4 60 0,025 0,005 12 140,2	12 079,9	60	-0,005	0,005
12 087,3 60 0,055 0,005 12 089,2 60 0,025 0,005 12 094,8 60 0,025 0,005 12 097,5 60 -0,005 0,005 12 1099,4 60 0,025 0,005 12 102,2 60 0,025 0,005 12 106,8 60 0,025 0,005 12 112,4 60 0,025 0,005 12 115,2 60 -0,005 0,005 12 117,0 60 0,025 0,005 12 119,8 60 0,025 0,005 12 119,8 60 0,025 0,005 12 122,6 60 0,025 0,005 12 130,0 60 0,025 0,005 12 130,0 60 0,025 0,005 12 134,7 60 0,025 0,005 12 137,4 60 0,025 0,005 12 142,1 60 0,025 0,005 12 147,6	12 081,8	60	0,025	0,005
12 089,2 60 0,025 0,005 12 094,8 60 0,025 0,005 12 097,5 60 -0,005 0,005 12 099,4 60 0,025 0,005 12 102,2 60 0,025 0,035 12 105,0 60 0,055 0,005 12 106,8 60 0,025 0,005 12 112,4 60 -0,025 0,005 12 115,2 60 -0,005 0,005 12 117,0 60 0,025 0,005 12 119,8 60 0,025 0,005 12 122,6 60 0,025 0,005 12 124,5 60 0,025 0,005 12 130,0 60 0,025 0,005 12 132,8 60 -0,005 0,005 12 134,7 60 0,025 0,005 12 140,2 60 0,025 0,005 12 142,1 60 0,025 0,005 12 150,4	12 084,6	60	0,025	0,035
12 094,8 60 0,025 0,005 12 097,5 60 -0,005 0,005 12 099,4 60 0,025 0,005 12 102,2 60 0,025 0,035 12 105,0 60 0,055 0,005 12 106,8 60 0,025 0,005 12 112,4 60 0,025 0,005 12 115,2 60 -0,005 0,005 12 117,0 60 0,025 0,005 12 119,8 60 0,025 0,005 12 119,8 60 0,025 0,005 12 122,6 60 0,025 0,005 12 124,5 60 0,025 0,005 12 130,0 60 0,025 0,005 12 132,8 60 -0,005 0,005 12 134,7 60 0,025 0,005 12 140,2 60 0,025 0,005 12 142,1 60 0,025 0,005 12 150,4	12 087,3	60	0,055	0,005
12 097,5 60 -0,005 0,005 12 099,4 60 0,025 0,005 12 102,2 60 0,025 0,035 12 105,0 60 0,055 0,005 12 106,8 60 0,025 0,005 12 112,4 60 0,025 0,005 12 115,2 60 -0,005 0,005 12 117,0 60 0,025 0,005 12 119,8 60 0,025 0,005 12 119,8 60 0,025 0,005 12 124,5 60 0,025 0,005 12 130,0 60 0,025 0,005 12 132,8 60 -0,005 0,005 12 134,7 60 0,025 0,005 12 137,4 60 0,025 0,005 12 140,2 60 0,025 0,005 12 147,6 60 0,025 0,005 12 150,4 60 -0,005 0,005 12 155,1	12 089,2	60	0,025	0,005
12 099,4 60 0,025 0,005 12 102,2 60 0,025 0,035 12 105,0 60 0,055 0,005 12 106,8 60 0,025 0,005 12 112,4 60 0,025 0,005 12 115,2 60 -0,005 0,005 12 117,0 60 0,025 0,005 12 119,8 60 0,025 0,005 12 119,8 60 0,025 0,005 12 122,6 60 0,025 0,005 12 124,5 60 0,025 0,005 12 130,0 60 0,025 0,005 12 132,8 60 -0,005 0,005 12 134,7 60 0,025 0,005 12 137,4 60 0,025 0,005 12 140,2 60 0,025 0,005 12 147,6 60 0,025 0,005 12 150,4 60 -0,005 0,005 12 155,1	12 094,8	60	0,025	0,005
12 102,2 60 0,025 0,035 12 105,0 60 0,055 0,005 12 106,8 60 0,025 0,005 12 112,4 60 0,025 0,005 12 115,2 60 -0,005 0,005 12 117,0 60 0,025 0,005 12 119,8 60 0,025 0,035 12 122,6 60 0,025 0,005 12 130,0 60 0,025 0,005 12 130,0 60 0,025 0,005 12 132,8 60 -0,005 0,005 12 134,7 60 0,025 0,005 12 137,4 60 0,025 0,005 12 140,2 60 0,025 0,005 12 147,6 60 0,025 0,005 12 150,4 60 -0,005 0,005 12 152,3 60 0,025 0,005 12 157,9 60 0,025 0,005 12 159,7	12 097,5	60	-0,005	0,005
12 105,0 60 0,055 0,005 12 106,8 60 0,025 0,005 12 112,4 60 0,025 0,005 12 115,2 60 -0,005 0,005 12 117,0 60 0,025 0,005 12 119,8 60 0,025 0,035 12 122,6 60 0,055 0,005 12 124,5 60 0,025 0,005 12 130,0 60 0,025 0,005 12 132,8 60 -0,005 0,005 12 134,7 60 0,025 0,005 12 137,4 60 0,025 0,005 12 140,2 60 0,025 0,005 12 147,6 60 0,025 0,005 12 150,4 60 -0,005 0,005 12 152,3 60 0,025 0,005 12 155,1 60 0,025 0,005 12 157,9 60 0,055 0,005 12 159,7	12 099,4	60	0,025	0,005
12 106,8 60 0,025 0,005 12 112,4 60 0,025 0,005 12 115,2 60 -0,005 0,005 12 117,0 60 0,025 0,005 12 119,8 60 0,025 0,035 12 122,6 60 0,055 0,005 12 124,5 60 0,025 0,005 12 130,0 60 0,025 0,005 12 132,8 60 -0,005 0,005 12 134,7 60 0,025 0,005 12 137,4 60 0,025 0,005 12 140,2 60 0,055 0,005 12 142,1 60 0,025 0,005 12 147,6 60 0,025 0,005 12 150,4 60 -0,005 0,005 12 152,3 60 0,025 0,005 12 155,1 60 0,025 0,005 12 157,9 60 0,055 0,005 12 159,7	12 102,2	60	0,025	0,035
12 112,4 60 0,025 0,005 12 115,2 60 -0,005 0,005 12 117,0 60 0,025 0,005 12 119,8 60 0,025 0,035 12 122,6 60 0,055 0,005 12 124,5 60 0,025 0,005 12 130,0 60 0,025 0,005 12 132,8 60 -0,005 0,005 12 134,7 60 0,025 0,005 12 137,4 60 0,025 0,005 12 140,2 60 0,025 0,005 12 142,1 60 0,025 0,005 12 147,6 60 0,025 0,005 12 150,4 60 -0,005 0,005 12 152,3 60 0,025 0,005 12 157,9 60 0,055 0,005 12 159,7 60 0,025 0,005 12 165,3 60 0,025 0,005	12 105,0	60	0,055	0,005
12 115,2 60 -0,005 0,005 12 117,0 60 0,025 0,005 12 119,8 60 0,025 0,035 12 122,6 60 0,055 0,005 12 124,5 60 0,025 0,005 12 130,0 60 0,025 0,005 12 132,8 60 -0,005 0,005 12 134,7 60 0,025 0,005 12 137,4 60 0,025 0,005 12 140,2 60 0,055 0,005 12 142,1 60 0,025 0,005 12 147,6 60 0,025 0,005 12 150,4 60 -0,005 0,005 12 152,3 60 0,025 0,005 12 157,9 60 0,025 0,005 12 159,7 60 0,025 0,005 12 165,3 60 0,025 0,005	12 106,8	60	0,025	0,005
12 117,0 60 0,025 0,005 12 119,8 60 0,025 0,035 12 122,6 60 0,055 0,005 12 124,5 60 0,025 0,005 12 130,0 60 0,025 0,005 12 132,8 60 -0,005 0,005 12 134,7 60 0,025 0,005 12 137,4 60 0,025 0,005 12 140,2 60 0,055 0,005 12 142,1 60 0,025 0,005 12 147,6 60 0,025 0,005 12 150,4 60 -0,005 0,005 12 152,3 60 0,025 0,005 12 157,9 60 0,055 0,005 12 159,7 60 0,025 0,005 12 165,3 60 0,025 0,005	12 112,4	60	0,025	0,005
12 119,8 60 0,025 0,035 12 122,6 60 0,055 0,005 12 124,5 60 0,025 0,005 12 130,0 60 0,025 0,005 12 132,8 60 -0,005 0,005 12 134,7 60 0,025 0,005 12 137,4 60 0,025 0,035 12 140,2 60 0,055 0,005 12 142,1 60 0,025 0,005 12 147,6 60 0,025 0,005 12 150,4 60 -0,005 0,005 12 152,3 60 0,025 0,005 12 155,1 60 0,025 0,005 12 157,9 60 0,055 0,005 12 159,7 60 0,025 0,005 12 165,3 60 0,025 0,005	12 115,2	60	-0,005	0,005
12 122,6 60 0,055 0,005 12 124,5 60 0,025 0,005 12 130,0 60 0,025 0,005 12 132,8 60 -0,005 0,005 12 134,7 60 0,025 0,005 12 137,4 60 0,025 0,035 12 140,2 60 0,055 0,005 12 142,1 60 0,025 0,005 12 147,6 60 0,025 0,005 12 150,4 60 -0,005 0,005 12 152,3 60 0,025 0,005 12 155,1 60 0,025 0,035 12 157,9 60 0,055 0,005 12 159,7 60 0,025 0,005 12 165,3 60 0,025 0,005	12 117,0	60	0,025	0,005
12 124,5 60 0,025 0,005 12 130,0 60 0,025 0,005 12 132,8 60 -0,005 0,005 12 134,7 60 0,025 0,005 12 137,4 60 0,025 0,035 12 140,2 60 0,055 0,005 12 142,1 60 0,025 0,005 12 147,6 60 0,025 0,005 12 150,4 60 -0,005 0,005 12 152,3 60 0,025 0,005 12 155,1 60 0,025 0,005 12 157,9 60 0,055 0,005 12 159,7 60 0,025 0,005 12 165,3 60 0,025 0,005	12 119,8	60	0,025	0,035
12 130,0 60 0,025 0,005 12 132,8 60 -0,005 0,005 12 134,7 60 0,025 0,005 12 137,4 60 0,025 0,035 12 140,2 60 0,055 0,005 12 142,1 60 0,025 0,005 12 147,6 60 0,025 0,005 12 150,4 60 -0,005 0,005 12 152,3 60 0,025 0,005 12 155,1 60 0,025 0,035 12 157,9 60 0,055 0,005 12 159,7 60 0,025 0,005 12 165,3 60 0,025 0,005	12 122,6	60	0,055	0,005
12 132,8 60 -0,005 0,005 12 134,7 60 0,025 0,005 12 137,4 60 0,025 0,035 12 140,2 60 0,055 0,005 12 142,1 60 0,025 0,005 12 147,6 60 0,025 0,005 12 150,4 60 -0,005 0,005 12 152,3 60 0,025 0,005 12 155,1 60 0,025 0,035 12 157,9 60 0,055 0,005 12 159,7 60 0,025 0,005 12 165,3 60 0,025 0,005	12 124,5	60	0,025	0,005
12 134,7 60 0,025 0,005 12 137,4 60 0,025 0,035 12 140,2 60 0,055 0,005 12 142,1 60 0,025 0,005 12 147,6 60 0,025 0,005 12 150,4 60 -0,005 0,005 12 152,3 60 0,025 0,005 12 155,1 60 0,025 0,035 12 157,9 60 0,055 0,005 12 159,7 60 0,025 0,005 12 165,3 60 0,025 0,005	12 130,0	60	0,025	0,005
12 137,4 60 0,025 0,035 12 140,2 60 0,055 0,005 12 142,1 60 0,025 0,005 12 147,6 60 0,025 0,005 12 150,4 60 -0,005 0,005 12 152,3 60 0,025 0,005 12 155,1 60 0,025 0,035 12 157,9 60 0,055 0,005 12 159,7 60 0,025 0,005 12 165,3 60 0,025 0,005	12 132,8	60	-0,005	0,005
12 140,2 60 0,055 0,005 12 142,1 60 0,025 0,005 12 147,6 60 0,025 0,005 12 150,4 60 -0,005 0,005 12 152,3 60 0,025 0,005 12 155,1 60 0,025 0,035 12 157,9 60 0,055 0,005 12 159,7 60 0,025 0,005 12 165,3 60 0,025 0,005	12 134,7	60	0,025	0,005
12 142,1 60 0,025 0,005 12 147,6 60 0,025 0,005 12 150,4 60 -0,005 0,005 12 152,3 60 0,025 0,005 12 155,1 60 0,025 0,035 12 157,9 60 0,055 0,005 12 159,7 60 0,025 0,005 12 165,3 60 0,025 0,005	12 137,4	60	0,025	0,035
12 147,6 60 0,025 0,005 12 150,4 60 -0,005 0,005 12 152,3 60 0,025 0,005 12 155,1 60 0,025 0,035 12 157,9 60 0,055 0,005 12 159,7 60 0,025 0,005 12 165,3 60 0,025 0,005	12 140,2	60	0,055	0,005
12 150,4 60 -0,005 0,005 12 152,3 60 0,025 0,005 12 155,1 60 0,025 0,035 12 157,9 60 0,055 0,005 12 159,7 60 0,025 0,005 12 165,3 60 0,025 0,005	12 142,1	60	0,025	0,005
12 152,3 60 0,025 0,005 12 155,1 60 0,025 0,035 12 157,9 60 0,055 0,005 12 159,7 60 0,025 0,005 12 165,3 60 0,025 0,005	12 147,6	60	0,025	0,005
12 155,1 60 0,025 0,035 12 157,9 60 0,055 0,005 12 159,7 60 0,025 0,005 12 165,3 60 0,025 0,005	12 150,4	60	-0,005	0,005
12 157,9 60 0,055 0,005 12 159,7 60 0,025 0,005 12 165,3 60 0,025 0,005	12 152,3	60	0,025	0,005
12 159,7 60 0,025 0,005 12 165,3 60 0,025 0,005	12 155,1	60	0,025	0,035
12 165,3 60 0,025 0,005	12 157,9	60	0,055	0,005
	12 159,7	60	0,025	0,005
12 168,1 60 -0,005 0,005	12 165,3	60	0,025	0,005
	12 168,1	60	-0,005	0,005

12 169,9	60	0,025	0,005
12 172,7	60	0,025	0,035
12 175,5	60	0,055	0,005
12 177,3	60	0,025	0,005
12 182,9	60	0,025	0,005
12 185,7	60	-0,005	0,005
12 187,5	60	0,025	0,005
12 190,3	60	0,025	0,035
12 193,1	60	0,055	0,005
12 195,0	60	0,025	0,005
12 200,5	60	0,025	0,005
12 203,3	60	-0,005	0,005
12 205,2	60	0,025	0,005
12 208,0	60	0,025	0,035
12 210,7	60	0,055	0,005
12 212,6	60	0,025	0,005
12 218,2	60	0,025	0,005
12 220,9	60	-0,005	0,005
12 222,8	60	0,025	0,005
12 225,6	60	0,025	0,035
12 228,4	60	0,055	0,005
12 230,2	60	0,025	0,005
12 235,8	60	0,025	0,005
12 238,6	60	-0,005	0,005
12 240,4	60	0,025	0,005
12 243,2	60	0,025	0,035
12 246,0	60	0,055	0,005
12 247,8	60	0,025	0,005
12 253,4	60	0,025	0,005
12 256,2	60	-0,005	0,005
12 258,1	60	0,025	0,005
12 260,8	60	0,025	0,035
12 263,6	60	0,055	0,005
12 265,5	60	0,025	0,005
12 271,0	60	0,025	0,005
12 273,8	60	-0,005	0,005
12 273,0	00	- ,	-,

12 278,5 60 0,025 0,035 12 281,2 60 0,055 0,005 12 283,1 60 0,025 0,005 12 288,7 60 0,025 0,005 12 291,5 60 -0,005 0,005 12 293,3 60 0,025 0,035 12 298,9 60 0,025 0,005 12 300,7 60 0,025 0,005 12 306,3 60 0,025 0,005 12 309,1 60 -0,005 0,005 12 310,9 60 0,025 0,005 12 313,7 60 0,025 0,005 12 318,4 60 0,025 0,005 12 323,9 60 0,025 0,005 12 323,9 60 0,025 0,005 12 331,3 60 0,025 0,005 12 334,1 60 0,025 0,005 12 334,0 60 0,025 0,005 12 344,6 <				
12 283,1 60 0,025 0,005 12 288,7 60 0,025 0,005 12 291,5 60 -0,005 0,005 12 293,3 60 0,025 0,035 12 298,9 60 0,055 0,005 12 300,7 60 0,025 0,005 12 309,1 60 -0,005 0,005 12 310,9 60 0,025 0,005 12 313,7 60 0,025 0,005 12 318,4 60 0,025 0,005 12 318,4 60 0,025 0,005 12 323,9 60 0,025 0,005 12 328,6 60 0,025 0,005 12 331,3 60 0,025 0,005 12 334,1 60 0,025 0,005 12 334,6 60 0,025 0,005 12 344,6 60 0,025 0,005 12 344,3 60 -0,005 0,005 12 349,0	12 278,5	60	0,025	0,035
12 288,7 60 0,025 0,005 12 291,5 60 -0,005 0,005 12 293,3 60 0,025 0,005 12 296,1 60 0,025 0,005 12 300,7 60 0,025 0,005 12 306,3 60 0,025 0,005 12 309,1 60 -0,005 0,005 12 310,9 60 0,025 0,005 12 316,5 60 0,025 0,005 12 318,4 60 0,025 0,005 12 323,9 60 0,025 0,005 12 328,6 60 0,025 0,005 12 331,3 60 0,025 0,005 12 334,1 60 0,025 0,005 12 344,6 60 0,025 0,005 12 344,3 60 -0,005 0,005 12 349,0 60 0,025 0,005 12 353,6 60 0,025 0,005 12 359,2	12 281,2	60	0,055	0,005
12 291,5 60 -0,005 0,005 12 293,3 60 0,025 0,005 12 296,1 60 0,025 0,035 12 298,9 60 0,055 0,005 12 300,7 60 0,025 0,005 12 309,1 60 -0,005 0,005 12 310,9 60 0,025 0,005 12 313,7 60 0,025 0,005 12 318,4 60 0,025 0,005 12 323,9 60 0,025 0,005 12 328,6 60 0,025 0,005 12 324,6 60 0,025 0,005 12 334,1 60 0,025 0,005 12 334,0 60 0,025 0,005 12 344,6 60 0,025 0,005 12 349,0 60 0,025 0,005 12 349,0 60 0,025 0,005 12 353,6 60 0,025 0,005 12 353,6 <	12 283,1	60	0,025	0,005
12 293,3 60 0,025 0,005 12 296,1 60 0,025 0,035 12 298,9 60 0,055 0,005 12 300,7 60 0,025 0,005 12 306,3 60 0,025 0,005 12 310,9 60 0,025 0,005 12 313,7 60 0,025 0,005 12 316,5 60 0,025 0,005 12 318,4 60 0,025 0,005 12 323,9 60 0,025 0,005 12 328,6 60 0,025 0,005 12 324,7 60 -0,005 0,005 12 331,3 60 0,025 0,005 12 334,1 60 0,025 0,005 12 334,6 60 0,025 0,005 12 344,3 60 -0,005 0,005 12 349,0 60 0,025 0,005 12 353,6 60 0,025 0,005 12 359,2 <	12 288,7	60	0,025	0,005
12 296,1 60 0,025 0,035 12 298,9 60 0,055 0,005 12 300,7 60 0,025 0,005 12 306,3 60 0,025 0,005 12 309,1 60 -0,005 0,005 12 310,9 60 0,025 0,005 12 313,7 60 0,025 0,005 12 318,4 60 0,025 0,005 12 323,9 60 0,025 0,005 12 328,6 60 0,025 0,005 12 328,6 60 0,025 0,005 12 334,1 60 0,025 0,005 12 334,1 60 0,025 0,005 12 341,6 60 0,025 0,005 12 344,3 60 -0,005 0,005 12 349,0 60 0,025 0,005 12 351,8 60 0,025 0,005 12 353,6 60 0,025 0,005 12 363,8 <	12 291,5	60	-0,005	0,005
12 298,9 60 0,055 0,005 12 300,7 60 0,025 0,005 12 306,3 60 0,025 0,005 12 309,1 60 -0,005 0,005 12 310,9 60 0,025 0,005 12 313,7 60 0,025 0,005 12 316,5 60 0,025 0,005 12 323,9 60 0,025 0,005 12 326,7 60 -0,005 0,005 12 328,6 60 0,025 0,005 12 331,3 60 0,025 0,005 12 334,1 60 0,025 0,005 12 341,6 60 0,025 0,005 12 344,3 60 -0,005 0,005 12 349,0 60 0,025 0,005 12 349,0 60 0,025 0,005 12 351,8 60 0,025 0,005 12 352,0 60 -0,005 0,005 12 362,0	12 293,3	60	0,025	0,005
12 300,7 60 0,025 0,005 12 306,3 60 0,025 0,005 12 309,1 60 -0,005 0,005 12 310,9 60 0,025 0,005 12 313,7 60 0,025 0,035 12 316,5 60 0,055 0,005 12 323,9 60 0,025 0,005 12 326,7 60 -0,005 0,005 12 328,6 60 0,025 0,005 12 331,3 60 0,025 0,005 12 334,1 60 0,025 0,005 12 334,6 60 0,025 0,005 12 344,3 60 -0,005 0,005 12 344,3 60 -0,025 0,005 12 349,0 60 0,025 0,005 12 351,8 60 0,025 0,005 12 359,2 60 0,025 0,005 12 362,0 60 -0,005 0,005 12 369,4	12 296,1	60	0,025	0,035
12 306,3 60 0,025 0,005 12 309,1 60 -0,005 0,005 12 310,9 60 0,025 0,005 12 313,7 60 0,025 0,005 12 316,5 60 0,025 0,005 12 318,4 60 0,025 0,005 12 323,9 60 0,025 0,005 12 328,6 60 0,025 0,005 12 331,3 60 0,025 0,005 12 334,1 60 0,025 0,005 12 341,6 60 0,025 0,005 12 344,3 60 -0,005 0,005 12 349,0 60 0,025 0,005 12 349,0 60 0,025 0,005 12 351,8 60 0,025 0,005 12 359,2 60 0,025 0,005 12 362,0 60 -0,005 0,005 12 363,8 60 0,025 0,005 12 369,4	12 298,9	60	0,055	0,005
12 309,1 60 -0,005 0,005 12 310,9 60 0,025 0,005 12 313,7 60 0,025 0,035 12 316,5 60 0,055 0,005 12 318,4 60 0,025 0,005 12 323,9 60 -0,005 0,005 12 328,6 60 -0,025 0,005 12 331,3 60 0,025 0,005 12 334,1 60 0,025 0,005 12 334,6 60 0,025 0,005 12 344,6 60 0,025 0,005 12 344,3 60 -0,005 0,005 12 349,0 60 0,025 0,005 12 351,8 60 0,025 0,005 12 359,2 60 0,025 0,005 12 359,2 60 0,025 0,005 12 363,8 60 0,025 0,005 12 363,8 60 0,025 0,005 12 371,2	12 300,7	60	0,025	0,005
12 310,9 60 0,025 0,005 12 313,7 60 0,025 0,035 12 316,5 60 0,055 0,005 12 318,4 60 0,025 0,005 12 323,9 60 0,025 0,005 12 328,6 60 0,025 0,005 12 331,3 60 0,025 0,005 12 334,1 60 0,025 0,005 12 341,6 60 0,025 0,005 12 344,3 60 -0,005 0,005 12 344,3 60 -0,005 0,005 12 349,0 60 0,025 0,005 12 351,8 60 0,025 0,005 12 353,6 60 0,025 0,005 12 359,2 60 0,025 0,005 12 362,0 60 -0,005 0,005 12 363,8 60 0,025 0,005 12 369,4 60 0,025 0,005 12 376,8	12 306,3	60	0,025	0,005
12 313,7 60 0,025 0,035 12 316,5 60 0,055 0,005 12 318,4 60 0,025 0,005 12 323,9 60 0,025 0,005 12 326,7 60 -0,005 0,005 12 328,6 60 0,025 0,005 12 331,3 60 0,025 0,005 12 334,1 60 0,025 0,005 12 341,6 60 0,025 0,005 12 344,3 60 -0,005 0,005 12 349,0 60 0,025 0,005 12 349,0 60 0,025 0,005 12 351,8 60 0,025 0,005 12 353,6 60 0,025 0,005 12 359,2 60 0,025 0,005 12 362,0 60 -0,005 0,005 12 363,8 60 0,025 0,005 12 369,4 60 0,025 0,005 12 371,2	12 309,1	60	-0,005	0,005
12 316,5 60 0,055 0,005 12 318,4 60 0,025 0,005 12 323,9 60 0,025 0,005 12 326,7 60 -0,005 0,005 12 328,6 60 0,025 0,005 12 331,3 60 0,025 0,035 12 334,1 60 0,055 0,005 12 341,6 60 0,025 0,005 12 344,3 60 -0,005 0,005 12 346,2 60 0,025 0,005 12 349,0 60 0,025 0,005 12 351,8 60 0,055 0,005 12 359,2 60 0,025 0,005 12 362,0 60 -0,005 0,005 12 363,8 60 0,025 0,005 12 369,4 60 0,025 0,005 12 371,2 60 0,025 0,005 12 376,8 60 -0,005 0,005 12 379,6	12 310,9	60	0,025	0,005
12 318,4 60 0,025 0,005 12 323,9 60 0,025 0,005 12 326,7 60 -0,005 0,005 12 328,6 60 0,025 0,005 12 331,3 60 0,025 0,035 12 334,1 60 0,055 0,005 12 341,6 60 0,025 0,005 12 344,3 60 -0,005 0,005 12 346,2 60 0,025 0,005 12 349,0 60 0,025 0,005 12 351,8 60 0,025 0,005 12 353,6 60 0,025 0,005 12 359,2 60 0,025 0,005 12 362,0 60 -0,005 0,005 12 363,8 60 0,025 0,005 12 369,4 60 0,025 0,005 12 371,2 60 0,025 0,005 12 376,8 60 -0,005 0,005 12 379,6	12 313,7	60	0,025	0,035
12 323,9 60 0,025 0,005 12 326,7 60 -0,005 0,005 12 328,6 60 0,025 0,005 12 331,3 60 0,025 0,035 12 334,1 60 0,055 0,005 12 336,0 60 0,025 0,005 12 341,6 60 0,025 0,005 12 344,3 60 -0,005 0,005 12 349,0 60 0,025 0,005 12 351,8 60 0,025 0,005 12 353,6 60 0,025 0,005 12 359,2 60 0,025 0,005 12 362,0 60 -0,005 0,005 12 363,8 60 0,025 0,005 12 369,4 60 0,025 0,005 12 371,2 60 0,025 0,005 12 376,8 60 -0,005 0,005 12 379,6 60 -0,005 0,005	12 316,5	60	0,055	0,005
12 326,7 60 -0,005 0,005 12 328,6 60 0,025 0,005 12 331,3 60 0,025 0,035 12 334,1 60 0,055 0,005 12 336,0 60 0,025 0,005 12 341,6 60 0,025 0,005 12 344,3 60 -0,005 0,005 12 346,2 60 0,025 0,005 12 349,0 60 0,025 0,005 12 351,8 60 0,025 0,005 12 353,6 60 0,025 0,005 12 359,2 60 0,025 0,005 12 362,0 60 -0,005 0,005 12 363,8 60 0,025 0,005 12 369,4 60 0,025 0,005 12 371,2 60 0,025 0,005 12 376,8 60 -0,005 0,005 12 379,6 60 -0,005 0,005	12 318,4	60	0,025	0,005
12 328,6 60 0,025 0,005 12 331,3 60 0,025 0,035 12 334,1 60 0,055 0,005 12 336,0 60 0,025 0,005 12 341,6 60 0,025 0,005 12 344,3 60 -0,005 0,005 12 346,2 60 0,025 0,005 12 349,0 60 0,025 0,005 12 351,8 60 0,025 0,005 12 353,6 60 0,025 0,005 12 359,2 60 0,025 0,005 12 362,0 60 -0,005 0,005 12 363,8 60 0,025 0,005 12 369,4 60 0,025 0,005 12 371,2 60 0,025 0,005 12 376,8 60 0,025 0,005 12 379,6 60 -0,005 0,005	12 323,9	60	0,025	0,005
12 331,3 60 0,025 0,035 12 334,1 60 0,055 0,005 12 336,0 60 0,025 0,005 12 341,6 60 0,025 0,005 12 344,3 60 -0,005 0,005 12 346,2 60 0,025 0,005 12 349,0 60 0,025 0,035 12 351,8 60 0,055 0,005 12 353,6 60 0,025 0,005 12 359,2 60 0,025 0,005 12 362,0 60 -0,005 0,005 12 363,8 60 0,025 0,005 12 366,6 60 0,025 0,005 12 371,2 60 0,025 0,005 12 376,8 60 0,025 0,005 12 379,6 60 -0,005 0,005	12 326,7	60	-0,005	0,005
12 334,1 60 0,055 0,005 12 336,0 60 0,025 0,005 12 341,6 60 0,025 0,005 12 344,3 60 -0,005 0,005 12 346,2 60 0,025 0,005 12 349,0 60 0,025 0,035 12 351,8 60 0,055 0,005 12 353,6 60 0,025 0,005 12 359,2 60 0,025 0,005 12 362,0 60 -0,005 0,005 12 363,8 60 0,025 0,005 12 366,6 60 0,025 0,005 12 371,2 60 0,025 0,005 12 376,8 60 0,025 0,005 12 379,6 60 -0,005 0,005	12 328,6	60	0,025	0,005
12 336,0 60 0,025 0,005 12 341,6 60 0,025 0,005 12 344,3 60 -0,005 0,005 12 346,2 60 0,025 0,005 12 349,0 60 0,025 0,035 12 351,8 60 0,055 0,005 12 353,6 60 0,025 0,005 12 359,2 60 0,025 0,005 12 362,0 60 -0,005 0,005 12 363,8 60 0,025 0,005 12 369,4 60 0,025 0,005 12 371,2 60 0,025 0,005 12 376,8 60 0,025 0,005 12 379,6 60 -0,005 0,005	12 331,3	60	0,025	0,035
12 341,6 60 0,025 0,005 12 344,3 60 -0,005 0,005 12 346,2 60 0,025 0,005 12 349,0 60 0,025 0,035 12 351,8 60 0,055 0,005 12 353,6 60 0,025 0,005 12 359,2 60 0,025 0,005 12 362,0 60 -0,005 0,005 12 363,8 60 0,025 0,005 12 366,6 60 0,025 0,035 12 371,2 60 0,025 0,005 12 376,8 60 0,025 0,005 12 379,6 60 -0,005 0,005	12 334,1	60	0,055	0,005
12 344,3 60 -0,005 0,005 12 346,2 60 0,025 0,005 12 349,0 60 0,025 0,035 12 351,8 60 0,055 0,005 12 353,6 60 0,025 0,005 12 359,2 60 0,025 0,005 12 362,0 60 -0,005 0,005 12 363,8 60 0,025 0,005 12 366,6 60 0,025 0,035 12 369,4 60 0,055 0,005 12 371,2 60 0,025 0,005 12 376,8 60 0,025 0,005 12 379,6 60 -0,005 0,005	12 336,0	60	0,025	0,005
12 346,2 60 0,025 0,005 12 349,0 60 0,025 0,035 12 351,8 60 0,055 0,005 12 353,6 60 0,025 0,005 12 359,2 60 0,025 0,005 12 362,0 60 -0,005 0,005 12 363,8 60 0,025 0,005 12 366,6 60 0,025 0,035 12 369,4 60 0,055 0,005 12 371,2 60 0,025 0,005 12 376,8 60 0,025 0,005 12 379,6 60 -0,005 0,005	12 341,6	60	0,025	0,005
12 349,0 60 0,025 0,035 12 351,8 60 0,055 0,005 12 353,6 60 0,025 0,005 12 359,2 60 0,025 0,005 12 362,0 60 -0,005 0,005 12 363,8 60 0,025 0,005 12 366,6 60 0,025 0,035 12 369,4 60 0,055 0,005 12 371,2 60 0,025 0,005 12 376,8 60 0,025 0,005 12 379,6 60 -0,005 0,005	12 344,3	60	-0,005	0,005
12 351,8 60 0,055 0,005 12 353,6 60 0,025 0,005 12 359,2 60 0,025 0,005 12 362,0 60 -0,005 0,005 12 363,8 60 0,025 0,005 12 366,6 60 0,025 0,035 12 369,4 60 0,055 0,005 12 371,2 60 0,025 0,005 12 376,8 60 0,025 0,005 12 379,6 60 -0,005 0,005	12 346,2	60	0,025	0,005
12 353,6 60 0,025 0,005 12 359,2 60 0,025 0,005 12 362,0 60 -0,005 0,005 12 363,8 60 0,025 0,005 12 366,6 60 0,025 0,035 12 369,4 60 0,055 0,005 12 371,2 60 0,025 0,005 12 376,8 60 0,025 0,005 12 379,6 60 -0,005 0,005	12 349,0	60	0,025	0,035
12 359,2 60 0,025 0,005 12 362,0 60 -0,005 0,005 12 363,8 60 0,025 0,005 12 366,6 60 0,025 0,035 12 369,4 60 0,055 0,005 12 371,2 60 0,025 0,005 12 376,8 60 0,025 0,005 12 379,6 60 -0,005 0,005	12 351,8	60	0,055	0,005
12 362,0 60 -0,005 0,005 12 363,8 60 0,025 0,005 12 366,6 60 0,025 0,035 12 369,4 60 0,055 0,005 12 371,2 60 0,025 0,005 12 376,8 60 0,025 0,005 12 379,6 60 -0,005 0,005	12 353,6	60	0,025	0,005
12 363,8 60 0,025 0,005 12 366,6 60 0,025 0,035 12 369,4 60 0,055 0,005 12 371,2 60 0,025 0,005 12 376,8 60 0,025 0,005 12 379,6 60 -0,005 0,005	12 359,2	60	0,025	0,005
12 366,6 60 0,025 0,035 12 369,4 60 0,055 0,005 12 371,2 60 0,025 0,005 12 376,8 60 0,025 0,005 12 379,6 60 -0,005 0,005	12 362,0	60	-0,005	0,005
12 369,4 60 0,055 0,005 12 371,2 60 0,025 0,005 12 376,8 60 0,025 0,005 12 379,6 60 -0,005 0,005	12 363,8	60	0,025	0,005
12 371,2 60 0,025 0,005 12 376,8 60 0,025 0,005 12 379,6 60 -0,005 0,005	12 366,6	60	0,025	0,035
12 376,8 60 0,025 0,005 12 379,6 60 -0,005 0,005	12 369,4	60	0,055	0,005
12 379,6 60 -0,005 0,005	12 371,2	60	0,025	0,005
	12 376,8	60	0,025	0,005
12 381,4 60 0,025 0,005	12 379,6	60	-0,005	0,005
<u>, </u>	12 381,4	60	0,025	0,005

12 384,2	60	0,025	0,035
12 387,0	60	0,055	0,005
12 388,9	60	0,025	0,005
12 394,4	60	0,025	0,005
12 397,2	60	-0,005	0,005
12 399,1	60	0,025	0,005
12 401,9	60	0,025	0,035
12 404,6	60	0,055	0,005
12 406,5	60	0,025	0,005
12 412,1	60	0,025	0,005
12 414,8	60	-0,005	0,005
12 416,7	60	0,025	0,005
12 419,5	60	0,025	0,035
12 422,3	60	0,055	0,005
12 424,1	60	0,025	0,005
12 429,7	60	0,025	0,005
12 432,5	60	-0,005	0,005
12 434,3	60	0,025	0,005
12 437,1	60	0,025	0,035
12 439,9	60	0,055	0,005
12 441,8	60	0,025	0,005
12 447,3	60	0,025	0,005
12 450,1	60	-0,005	0,005
12 452,0	60	0,025	0,005
12 454,7	60	0,025	0,035
12 457,5	60	0,055	0,005
12 459,4	60	0,025	0,005
12 464,9	60	0,025	0,005
12 467,7	60	-0,005	0,005
12 469,6	60	0,025	0,005
12 475,2	60	0,025	0,005
12 477,9	60	0,055	0,005
12 479,8	60	0,025	0,005
12 485,4	60	0,025	0,005
12 488,1	60	-0,005	0,005
12 490,0	60	0,025	0,005

Приложение 10 — Добавление 4

Допуски для испытательного оборудования

Таблица В.1 Точность измерительных приборов

Параметр	Точность регулировки	Приведенная погрешность измерительного прибора
Силовое воздействие шины	Fz: ± 50 H или 1 % при использовании фильтрованных значений, в зависимости от того, что больше. Fy: ± 100 H или 5 % при использовании фильтрованных значений, в зависимости от того, что больше, для разницы между исходными и фактически полученными пиковыми значениями. Fx: ± 100 H или 5 % при использовании фильтрованных значений, в зависимости от того, что больше, для разницы между исходными и фактически полученными пиковыми значениями. My: ± 40 H⋅м или 5 % при использовании фильтрованных значений, в зависимости от того, что больше, для разницы между исходными и фактически полученными пиковыми значениями.	Fz: ±1 % Fy: ±1 % Fx: ±1 % My: ±1 %
Давление в шине	±3 кПа	±3 кПа
Весы	Не применимо	±2 Γ
Продолжительность испытания	Общая фактическая продолжительность испытания не должна отличаться более чем на ±5 % от общего исходного значения, равного 68,83 ч (247 800 с). Измерения проводят с частотой, превышающей 1 Гц.	±0,02 с для приращений времени
Угол развала	0 ± 0,1°	0 ± 0,1°
Термометр	±5 °C	±0,5 °C
Скорость	±2 км/ч	±0,1 %

Приложение 10 — Добавление 5

Замена шлифовальной бумаги, используемой в качестве испытательной поверхности

Поверхность из шлифовальной бумаги подлежит замене, если она не соответствует спецификациям, приведенным в пункте 2.3.2.3.

Поверхность из шлифовальной бумаги подлежит замене, если:

величина пробега достигла 20 000 км для барабана диаметром 3 м с 2 положениями либо 40 000 км — для барабана диаметром 3 м с 1 положением.

Если диаметр барабана не равняется 3 м, применяют следующую формулу:

расстояние замены испытательного дорожного покрытия (км) = расстояние замены испытательного дорожного покрытия (стандартное значение) х диаметр барабана, используемого каждой испытательной станцией (м)/стандартный диаметр барабана (м),

где:

расстояние замены испытательного дорожного покрытия (стандартное значение) = $20\ 000\ \mathrm{km}$;

стандартный диаметр барабана = 3 м.

Номер протокола

Приложение 10 — Добавление 6

Пример протокола испытания для метода испытания на барабане в помещении

Протокол испытания должен содержать следующую информацию:

номер протокола испытания:			,	Дата	испытания:			~
Идентификационное обозначение испытательной машины:			L					
Длина окружности барабана (м)						В начале испытания		В конце испытания
Цикл испытания (2 положение)					испытательной эхности (мм):			
Рабочий слой	Тальк	или кремнезем	1	испы	ошероховатость гательной охности (мм):			
Тип испы	туемой і	шины			Эталонная	шина	Поп	пенциальная шина
Класс шины								
Марка								
Рисунок/торговое описание					СЭИШ			
Обозначение размеров шины								
Эксплуатационное описание								
Испытательная нагрузка (Н)								
Испытательное давление в ш	ине (кП	a)						
Идентификационный номер і	шины							
Маркировка 3PMSF (имеется	/отсутст	гвует)						
Ширина обода								
D	(иПа)	В начале испытания						
Внутреннее давление в шине	(кпа)	В конце испытания						
Massa www. (p)		До испытания						
Масса шины (г)		После испытани	Я					
Испытательное расстояние (к	(м)							
Степень абразивного износа ((мг/км)							
Уровень абразивного износа	(мг/км/т	E)						
Индекс абразивного износа								
Средняя температура окружа	ющей с	реды (°С)						
Среднеквадратичное значени	e G(x)							
Среднеквадратичное значени	e G(y)							
Среднеквадратичное значение G(x,y)								
Среднее значение Fz								
Количество порошка, распыл	яемого і	на эталонную шин	ıy					
Замечания								